Hamming Quasi-Cyclic (HQC)

Fourth round version

Updated version 30/04,/2023

HQC is an IND-CCA2 KEM running for standardization to NIST’s competition in the
category “post-quantum public key encryption scheme”. Parameters sets are given for the
three categories 1, 3 and 5. The main features of the HQC submission are:

- IND-CCA2 KEM

- Small public key size

- Precise DFR analysis

- Efficient implementations based on classical decoding algorithms

Principal Submitters (by alphabetical order):

e Carlos AGUILAR MELCHOR e Arnaud DION
(SandboxAQ) (ISAE Supaero)

e Nicolas ARAGON e Philippe GABORIT
(Univ. of Limoges/ (Univ. of Limoges)
partially funded by DGA) e Jérome LACAN

e Slim BETTAIEB (ISAE Supaero)
(Worldline) e Edoardo PERSICHETTI

e Loic BIDOUX (Florida Atlantic Univ.)
(TII) e Jean-Marc ROBERT

e Olivier BLAZY (Univ. of Toulon)
(Ecole Polytechnique) e Pascal VERON

e Jurjen Bos (Univ. of Toulon)
(Worldline) e Gilles ZEMOR

o Jean-Christophe DENEUVILLE (Univ. of Bordeaux)
(ENAC)

Inventors: Same as submitters

Developers: Same as submitters

Owners: Same as submitters

Main contact Backup point of contact

Philippe GABORIT # Jean-Christophe DENEUVILLE

@ philippe.gaborit@Qunilim.fr @ jean-christophe.deneuville@enac.fr

$» +33-626-907-245 $ +33-631-142-705

= University of Limoges = ENAC Toulouse

= 123 avenue Albert Thomas = 7 avenue Edouard Belin
87 060 Limoges Cedex 31 400 Toulouse
France France

Signatures

Digital copies of the signed statements were provided to NIST in the original submis-
sion on Nov. 30, 2017. The paper versions have been provided to NIST at the First PQC
Standardization Conference on Apr. 13, 2018.

Paper versions of the signed statements for the team members added in round 3 will be
provided to NIST during the next PQC Standardization Conference.

mailto:philippe.gaborit@unilim.fr
mailto:jean-christophe.deneuville@enac.fr

1.1

1.2

History of updates on HQC

Updates for April the 30th 2023

We now consider the HHK transform with implicit rejection into our scheme. We
provide an IND-CCA security proof in the HHK framework for this modification. We
have updated the implementation to reflect the aforementioned changes and have also
updated the KATs to align with these improvements..

We provide a security analysis indicating that sampling vectors of small weights non-
uniformly, yet close to uniform, has a negligible effect on HQC’s IND-CCA security,
following the approach of Nicolas Sendrier ("Secure Sampling of Constant-Weight
Words, Application to BIKE". TACR Cryptol. ePrint Arch. 2021: 1631 (2021)).

Updates for October the 1st 2022

Multi-ciphertext attack: for HQC-128 the ciphertext is generated deterministically
from a seed of 128 bits, which allows a straightforward multi-ciphertext attack that
allows an attacker to recover the shared secret for one out of N ciphertexts at a cost
of 212 /N. This attack does not contradict the claim of category 1 IND-CCA security
for this parameter set of HQC, meanwhile since it is an undesirable property, we
modified our scheme at negligible cost by incorporating a public salt value into the
ciphertext (for all security levels). So that the randomness 0 is now computed from a
salt together with the public key.

6 = SHAKE256-512(m||pk| salt)
We modified our scheme and the proof accordingly.

Counter-measure to a timing attack: In the paper:

"Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in
HQC and BIKE" by Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman
Lahr, Alexander Nilsson, and Robin Leander Schroder published a CHES 2022, the
authors explain how it is possible to use the randomness generator of the small weight
words to produce an attack. In order to counter this attack we included the counter-
measure described by Nicolas Sendrier (Algo 5) in:

"Secure Sampling of Constant-Weight Words, Application to BIKE". TACR, Cryptol.
ePrint Arch. 2021: 1631 (2021)

In practice this counter-measures implies a loss of a few percentages points in our
performance.

e Constant time additional implementation: we included a pure C constant time

(not optimized) implementation.

e The hardware implementation does not currently incorporate the aforementioned mit-
igation related to multi-ciphertext attacks. We will provide an updated version in the

next release.

We recall the main parameters of HQC and the last performances (in kilocycles):

Public key size | Ciphertext size | KeyGen | Encaps | Decaps | DFR
hqc-128 2,249 4,497 87 204 362 < 271%
hqc-192 4,522 9,042 204 465 755 < 27192
hqc-256 7,245 14,485 409 904 1505 | <2726
1.3 Updates for June the 6th 2021

e Domain separation and the randomness generation are now performed using a KEC-

CAK core rather than the functions randombytes and seedexpander provided by
NIST.

e We provide a full HLS-compatible hardware implementation with two flavors: perfor-

mance oriented and compactness oriented.

e A design of a common hardware-software architecture resulting in the same outputs

1.4

for both the hardware and software reference implementation.

Updates for October the 1st 2020

e Since the RMRS decoder is strictly better than the BCH-Repetition decoder, we now

only consider the RMRS decoder version of the HQC algorithm and we do not consider
the BCH-Repetition decoder any more.

e In order to fit more precisely the Level 1 and 3 of NIST security categories, the sizes

of the decoded messages for the concatenated RMRS code are set to the adequate
security levels (i.e. dimension 128 and dimension 192 rather than 256 for level 1 and
level 3), for Level 1 and Level 3 this modification improves on the decoding capacity
of the RMRS code and hence improves parameters.

e We improved the theoretical lower bound for the Reed-Muller decoder (approaching

optimality), which permits to lower our theoretical bound for the DFR and hence also
improve on parameters (section 2.5).

e Based on the two previous improvements, we provide new sets of parameters, and we

obtain the following sizes (in bytes) and performances (in kilocycles):

Public key size | Ciphertext size | KeyGen | Encaps | Decaps | DFR
hqc-128 2,249 4,481 136 220 384 | <2 1
hqc-192 4,522 9,026 305 501 821 < 27192
hqc-256 7,245 14,469 545 918 1538 | <276

e All these changes have been implemented in constant time and we provide details on
our implementations for multiplication and encoding/decoding (section 3.2).

e We give performances numbers for a hardware implementation of the scheme in section

29
J.9.

e We are pleased to welcome new members to our team: Jéréme Lacan and Arnaud
Dion.

1.5 Updates for May the 4th 2020

We provide in this update two main theoretical improvements which do not change the
scheme and updates on our implementations.

e (Improvement 1) We provide in Section 2.4 a more precise analysis of the mod-
elization of the error distribution. This new analysis permits to lower the DFR of our
parameters and permits to decrease the size of our public keys by 3% (new parameters
are given in Table 2 of Section 2.8.1). The size for 128 security bits is now (3,024
Bytes).

e (Improvement 2) We introduce in Section 2.6 a new decoding algorithm based
on the concatenation of Reed-Muller and Reed-Solomon codes. This new algorithm
does not change the general scheme nor its security and permits to decrease the size
of the public key by 17% for 128 security bit (now of size 2,607 Bytes), a new set
of parameters, HQC-RMRS, is given in Section 2.8.2 for 128, 192 and 256 bits of
security.

e For parameters, we now only consider DFR corresponding to the security level and
remove three parameters compared to the round 2 submission. We now only have
one set of parameters for each level of security (both for HQC and the HQC-RMRS
decoding variation).

e Our implementations gained in efficiency. Our optimized AVX2 implementation is
now constant time and avoids secret dependent memory access. We provide new
optimized implementations in C and AVX2 for the two sets of parameters HQC and
HQC-RMRS (see Section 3.1 and 3.2). Moreover our implementations no longer rely
on third party libraries.

We highlight in Section 2.8.3 how it could be possible to further decrease by 10% the
size of the public keys with a security reduction to a slight variation of the 3-QCSD
problem.

We welcome Jean-Marc Robert and Pascal Véron from the University of Toulon
(France) as new members of our team.

For 128 bits of security, we obtain the following sizes (in bytes) and performances (in
kilocycles) for our optimized implementation leveraging AVX2:

Public key size | Ciphertext size | KeyGen | Encaps | Decaps | DFR

HQC 3,024 6,017 175 286 486 < 271%
HQC-RMRS 2,607 5,191 160 272 556 < 27128
1.6 Modifications between Round 1 and Round 2
e Jurjen Bos (from Worldline) joined the HQC team.
e Problems with parity: As previously announced few months ago, the 2 and 3-DQCSD

problems with parity distributions have been introduced to counter distinguisher from
parity.

Minor scheme modification : due to the specific use of tensor product codes (BCH
and repetition), the length of the code is not required to be a prime. Specifically, the
tensor product code has length nyng with ny (resp. ny) the length of the BCH (resp.
repetition) code. In order to avoid algebraic attacks using polynomial factorization,
we chose primitive primes n immediately greater than ninsy. This results in extra bits,
that are truncated where useless. The proof has been modified accordingly.

The reference implementation now relies on NTL.

We added an optimized implementation written in C that uses AVX2 instructions
and takes advantages of the low Hamming weight of the vectors in HQC.

We added a constant time implementation of the decoding of BCH codes.

2—128

Parameters providing a Decryption Failure Rate (DFR) higher than have been

discarded.

Contents

1 History of updates on HQC

1.1 Updates for April the 30th 2023,
1.2 Updates for October the 1st 2022
1.3 Updates for June the 6th 2021
1.4 Updates for October the 1st 2020
1.5 Updates for May the 4th 2020
1.6 Modifications between Round 1 and Round 2.

2 Specifications
2.1 Preliminaries
2.1.1 General definitions

2.1.2 Difficult problems for cryptography

2.2 Encryption and security .
2.3 Presentation of the scheme

2.3.1 Public key encryption version (HQC.PKE)

2.3.2 KEM/DEM version
2.3.3 A hybrid encryption
2.4 Analysis of the error vector

(HQCKEM)o oo oo o
scheme (HQC.HE)
distribution for Hamming distance

2.5 Decoding with concatenated Reed-Muller and Reed-Solomon codes

2.5.1 Definitions
2.5.2 Reed-Solomon codes

2.5.3 Encoding shortened Reed-Solomon codes
2.5.4 Decoding shortened Reed-Solomon codes
2.5.5 Duplicated Reed-Muller codes
2.5.6 Encoding Duplicated Reed-Muller codes
2.5.7 Decoding Duplicated Reed-Muller codes
2.5.8 Decryption failure rate analysis

2.5.9 Simulation results .
2.6 Representation of objects .
2.6.1 Keys and ciphertext

representation oL

2.6.2 Randomness and vector generation

2.7 Parameters
2.7.1 Concatenated codes

3 Performance Analysis
3.1 Reference implementation

3.2 Optimized constant-time implementation

3.3 Hardware Implementation

4 Known Answer Test Values

11
15
16
16
17
18
18
21
21
22
23
24
25
26
26
27
30
30
30
31
32
32

32
33
34
35

38

5 Security

5.1 IND-CPA security o o

=

5.2 IND-CCA security o v i v i it et e

5.2.1 HQC.PKE correction and DFR
5.2.2 HHK proof
5.3 Security proof with non uniform randomness generation
5.3.1 Arguments related to the security reduction
5.3.2 Arguments related to the public key generation

6 Known Attacks

7 Advantages and Limitations

7.1 Advantages
7.2 Limitations

References

38
38
42
43
43
45
46
46

48

49
49
49

49

2 Specifications

In this section, we introduce HQC, an efficient encryption scheme based on coding the-
ory. HQC stands for Hamming Quasi-Cyclic. This proposal has been published in IEEE
Transactions on Information Theory [1].

HQC is a code-based public key cryptosystem with several desirable properties:

e It is proved IND-CPA assuming the hardness of (a decisional version of) the Syndrome
Decoding on structured codes. By construction, HQC perfectly fits the recent KEM-
DEM transformation of [19], and allows to get an hybrid encryption scheme with
strong security guarantees (IND-CCA2),

e In contrast with most code-based cryptosystems, the assumption that the family of
codes being used is indistinguishable among random codes is no longer required, and

e It features a detailed and precise upper bound for the decryption failure probability
analysis.

Organization of the Specifications. This section is organized as follows: we provide
the required background in Sec. 2.1, we make some recalls on encryption and security in
Sec. 2.2 then present our proposal in Sec. 2.3. An analysis of the decryption failure rate
is proposed in Sec. 2.4. Details about codes being used are provided in Sec. 2.5, together
with a specific analysis for these codes. Finally, concrete sets of parameters are provided in
Sec. 2.7.

2.1 Preliminaries
2.1.1 General definitions

Throughout this document, Z denotes the ring of integers and Fy the binary finite field.
Additionally, we denote by w(-) the Hamming weight of a vector i.e. the number of its
non-zero coordinates, and by S/ (IFy) the set of words in F} of weight w. Formally:

S; (Fy) = {v € F3, such that w(v) = w}.

V denotes a vector space of dimension n over Fy for some positive n € Z. Elements of V
can be interchangeably considered as row vectors or polynomials in R = Fy[X]/(X™ — 1).
Vectors/Polynomials (resp. matrices) will be represented by lower-case (resp. upper-case)
bold letters. A prime integer n is said primitive if the polynomial X" — 1/(X — 1) is
irreducible in ‘R.

For u,v € V, we define their product similarly as in R, i.e. uv =w €)V with

wy = Z wvj, for k€ {0,1,...,n—1}. (1)

i+j=k mod n

Our new protocol takes great advantage of the cyclic structure of matrices. In the same
fashion as [1], rot(h) for h € V denotes the circulant matrix whose i® column is the vector
corresponding to hX?. This is captured by the following definition.

Definition 2.1.1 (Circulant Matrix). Let v = (vg,...,v,—1) € F5. The circulant matrix
mduced by v 1s defined and denoted as follows:

Vo Up—1 ... U1
[(% R V]

rot(v) = ,1 _0 _ ,2 e Fy3xn (2)
Un—1 Up—2 ... Vo

As a consequence, it is easy to see that the product of any two elements u,v € R can
be expressed as a usual vector-matrix (or matrix-vector) product using the rot(-) operator
as

u-v=uxrot(v) = (rot(u) x VT)T —vxrot(u)' =v-u (3)

Coding Theory. We now recall some basic definitions and properties about coding
theory that will be useful to our construction. We mainly focus on general definitions, and
refer the reader to Sec. 2.3 the description of the scheme, and also to [20] for a complete
survey on code-based cryptography.

Definition 2.1.2 (Linear Code). A Linear Code C of length n and dimension k (denoted
[n,k]) is a subspace of R of dimension k. Elements of C are referred to as codewords.

Definition 2.1.3 (Generator Matrix). We say that G € F5*" is a Generator Matrix for
the [n, k] code C if
C = {mG, for m € F5}. (4)

Definition 2.1.4 (Parity-Check Matrix). Given an [n, k| code C, we say that H €]Fé”*’“)“
is a Parity-Check Matrix for C if H is a generator matriz of the dual code C*+, or more
formally, if

C = {v € F} such that Hv' = 0}, or equivalently ct = {uH, for u € Fg_k} . (5

Definition 2.1.5 (Syndrome). Let H € F"™™*" be a parity-check matriz of some [n, k] code
C, and v € F} be a word. Then the syndrome of v is Hv ', and we have v € C < Hv' = 0.

Definition 2.1.6 (Minimum Distance). Let C be an [n, k] linear code over R and let w be
a norm on R. The Minimum Distance of C is

d= i — V). 6
u,vrencl,llll;évw(u V) ()

10

A code with minimum distance d is capable of decoding arbitrary patterns of up to
A = [£2] errors. Code parameters are denoted [n, k, d).

Code-based cryptography usually suffers from huge keys. In order to keep our cryp-
tosystem efficient, we will use the strategy of Gaborit [13] for shortening keys. This results

in Quasi-Cyclic Codes, as defined below.

Definition 2.1.7 (Quasi-Cyclic Codes [28|). View a vector ¢ = (co,...,cs_1) of F§" as s
successive blocks (n-tuples). An [sn, k,d] linear code C is Quasi-Cyclic (QC) of index s if,
for any ¢ = (cq,...,cs_1) € C, the vector obtained after applying a simultaneous circular
shift to every block cg, ..., cs_1 1s also a codeword.

More formally, by considering each block c; as a polynomial in R = Fy[X]/(X™ —1), the
code C is QC of index s if for any ¢ = (co, .. .,cs_1) € C it holds that (X -cg,..., X -cs_1) € C.

Definition 2.1.8 (Systematic Quasi-Cyclic Codes). A systematic Quasi-Cyclic [sn,n] code
of index s and rate 1/s is a quasi-cyclic code with an (s — 1)n X sn parity-check matriz of
the form.:

I, 0 --- 0 Ay
I, A,
H = . . (7)
0 o T, Ay
where Ay, ..., As_o are circulant n X n matrices.

Remark 2.1. The definition of systematic quasi-cyclic codes of index s can of course be
generalized to all rates /s, £ = 1...s — 1, bul we shall only use systematic QC-codes of
rates 1/2 and 1/3 and wish to lighten notation with the above definition. In the sequel,
referring to a systematic QC-code will imply by default that it is of rate 1/s. Note that
arbitrary QC-codes are not necessarily equivalent to a systematic ()C-code.

2.1.2 Difficult problems for cryptography

In this section we describe difficult problems which can be used for cryptography and discuss
their complexity.

All problems are variants of the decoding problem, which consists of looking for the
closest codeword to a given vector: when dealing with linear codes, it is readily seen that
the decoding problem stays the same when one is given the syndrome of the received vector
rather than the received vector. We therefore speak of Syndrome Decoding (SD).

Definition 2.1.9 (SD Distribution). For positive integers n, k, and w, the SD(n,k, w)
Distribution chooses H & Fén_k)xn and x & FY such that w(x) = w, and outputs
(H,0(x) = Hx).

Definition 2.1.10 (Computational SD Problem). On input (H,y ') € Fy" "™ x F{*»
from the SD distribution, the Syndrome Decoding Problem SD(n, k,w) asks to find x € F4
such that Hx' =y and w(x) = w.

11

For the Hamming distance the SD problem has been proven NP-complete [6]. This
problem can also be seen as the Learning Parity with Noise (LPN) problem with a fixed
number of samples [2|. For cryptography we also need a decision version of the problem,
which is given in the following definition.

Definition 2.1.11 (Decisional SD Problem). On input (H,y ') € FS"™"" x B the
Decisional SD Problem DSD(n, k, w) asks to decide with non-negligible advantage whether
(H,y") came from the SD(n, k,w) distribution or the uniform distribution over Fén_k)xn X
Fén—k)-

As mentioned above, this problem is the problem of decoding random linear codes from
random errors. The random errors are often taken as independent Bernoulli variables acting
independently on vector coordinates, rather than uniformly chosen from the set of errors of
a given weight, but this hardly makes any difference and one model rather than the other is
a question of convenience. The DSD problem has been shown to be polynomially equivalent
to its search version in [2].

Finally, as our cryptosystem will use QC-codes, we explicitly define the problem on
which our cryptosystem will rely. The following definitions describe the DSD problem in
the QC configuration, and are just a combination of Def. 2.1.7 and 2.1.11. Quasi-Cyclic
codes are very useful in cryptography since their compact description allows to decrease
considerably the size of the keys. In particular the case s = 2 corresponds to double
circulant codes with generator matrices of the form (I,, A) for A a circulant matrix. Such
double circulant codes have been used for almost 10 years in cryptography (cf [14]) and
more recently in [28]. Quasi-cyclic codes of index 3 are also considered in [28].

Definition 2.1.12 (s-QCSD Distribution). For positive integers n, w and s, the s-

QCSD(n,w) Distribution chooses uniformly at random a parity-check matriz H &
Fésn_n)xsn of a systematic QC code C of index s and rate 1/s (see Def. 2.1.8) together

with a vector X = (Xg,...,Xs—1) & F5" such that w(x;) = w, i = 0..s — 1, and outputs
(H,Hx").

Definition 2.1.13 ((Computational) s-QCSD Problem). For positive integers n, w, s, a

random parity check matriz H of a systematic QC code C of index s and 'y & F3"™", the
Computational s-Quasi-Cyclic SD Problem s-QCSD(n,w) asks to find x = (xq,...,Xs_1) €
Fs™ such that w(x;) =w, i =0..s — 1, and y = xH".

It would be somewhat more natural to choose the parity-check matrix H to be made up
of independent uniformly random circulant submatrices, rather than with the special form
required by (7). We choose this distribution so as to make the security reduction to follow
less technical. It is readily seen that, for fixed s, when choosing quasi-cyclic codes with this
more general distribution, one obtains with non-negligible probability, a quasi-cyclic code
that admits a parity-check matrix of the form (7). Therefore requiring quasi-cyclic codes to
be systematic does not hurt the generality of the decoding problem for quasi-cyclic codes.
A similar remark holds for the slightly special form of weight distribution of the vector x.

12

Assumption 1. Although there is no general complexity result for quasi-cyclic codes, de-
coding these codes is considered hard by the community. There exist general attacks which
uses the cyclic structure of the code [30] but these attacks have only a small (sub-linear in
the code length) impact on the complexity of the problem. The conclusion is that in practice,
the best attacks are the same as those for non-circulant codes up to a small factor.

The problem also has a decisional version. In order to avoid trivial distinguishers, an
additional condition on the parity of the syndrome needs to be appended. For b € {0, 1},
we define the finite set 5, = {h € Fy s.t. h(1) = b mod 2}, i.e. binary vectors of length
n and parity b. Similarly for matrices, we define the finite sets

Fy;* = {H = (I, rot (h)) € F;**" s.t. h € Fy, }, and

F3 o = {H = <0 I rot(h;)) e F3"" s.t. hy € Fy, and hy € FvaQ} :
This is pure technicality and does not affect the parameters of our proposal. Meanwhile,
this trick permits to discard attacks such as [16, 22, 23]'. The authors are grateful to Ray
Perlner for pointing out the existence of such a distinguisher.

Definition 2.1.14 (2-QCSD Distribution (with parity)). For positive integers n, w and b,
the 2-QCSD(n, w,b) Distribution with parity chooses uniformly at random a parity-check
matric H € IF%Z” together with a vector x = (X1, Xs) & F2" such that w(x;) = w(xz) = w,
and outputs (H,Hx").

Definition 2.1.15 (Decisional 2-QCSD Problem (with parity)). Let h € Fy,, H =
(I, rot(h)), and b = w + b x w mod 2. Fory € F3,, the Decisional 2-Quasi-Cyclic SD
Problem with parity 2-DQCSD(n,w, b) asks to decide with non-negligible advantage whether
(H,y) came from the 2-QCSD(n,w,b) distribution with parity or the uniform distribution
over Fy 32" x Fy .

In order to fully explicit the problems upon which HQC relies, we also define the 3-
DQCSD problem with parity. Following Def. 2.1.8, the s-DQCSD problem with parity can
be easily generalized to higher s > 3, but we avoid such a description for the sake of clarity.

Definition 2.1.16 (3-QCSD Distribution (with parity)). For positive integers n, w, by
and by, the 3-QCSD(n,w, by, by) Distribution with parity chooses uniformly at random a
parity-check matriz H € Fg’éfig together with a vector x = (X1, X2, X3) & F3" such that

w(x1) = w(xa) = w(xs) = w, and outputs (H,Hx").

!The authors chose to use a parity version of the DQCSD problem rather than a variable weight version
as suggested in [23] for efficiency issues.

13

Definition 2.1.17 (Decisional 3-QCSD Problem (with parity)). Let h, € F3, ;hy € F3,
(L, 0 rot(h)) ;o ;o

H = (0 I, rot(h2)>’ by = w+ b x w mod?2 and b, = w + by X w mod 2.

For (yi1,y2) € Iﬁ‘g’b,l X F’;’by the Decisional 3-Quasi-Cyclic SD Problem with parity 3-

DQCSD(n,w, by, be) asks to decide with non-negligible advantage whether (H, (y1,y2)) came

from the 3-QCSD(n,w,by,by) distribution with parity or the uniform distribution over

2nx3n n n
b X (sz’l X FQ,bé)‘

As for the ring-LPN problem, there is no known reduction from the search version of
s-QCSD problem to its decision version. The proof of [2| cannot be directly adapted in the
quasi-cyclic case, however the best known attacks on the decision version of the s-QCSD
problem remain the direct attacks on the search version.

The IND-CPA security of HQC essentially relies on the hardness of the 2 and 3-DQCSD
problems described above (Def. 2.1.15 and 2.1.17). However, in order to thwart structural
attacks, we need to work with a code of primitive prime length n, so that X™ — 1 has only
two irreducible factors mod ¢. But for parameters and codes considered in the proposed
instantiations (concatenated Reed-Muller and Reed-Solomon codes), the encoding of a
message m has size ning, which is obviously not prime. Therefore we use as ambient length
n which is a first primitive prime greater than nin., and truncate the last £ = n — niny
bits wherever needed. This results in a slightly modified version of the DQCSD problem,
that we will argue to be at least as hard as the original ones. We first define this truncated
version in its primal version.

Definition 2.1.18 (Decoding with ¢ erasures). Let C[n, k] be a QC-code generated by G

and ¢ = mG + e for some random e & S*(Fy). Consider the matriz G' € FE*" (resp.
vector € € Y’) obtained by removing the last £ =n —n' > 1 columns from G (resp. e).

The Decoding with { erasures problem asks to recover m € F5 from ¢/ = mG’ 4 € € FY
and G’ € T

Conceptually speaking, the above problem asks to recover the encoded message, given
less information. It then becomes obvious that Decoding with erasures is harder than with
full knowledge of the encoding. Assume that A can solve the decoding problem with ¢
erasures, and let (c, G) be an instance of the decoding problem with no erasure. One starts
by removing the last ¢ columns from c¢ and G, then uses A to recover m € F%. Since the
dimension is unchanged in both problems, m is also solution to the decoding problem with
no erasure, which confirms the hardness statement.

As the decoding problem and the syndrome decoding problem are equivalent, the argu-
ment previously exposed applies. Therefore the corresponding 2 and 3-DQCSD problems
with ¢ = n —nyny erasures obtained to avoid structural attacks are at least as hard as those
defined in Def. 2.1.15 and 2.1.17 above.

14

2.2 Encryption and security

Encryption Scheme. An encryption scheme is a tuple of four polynomial time algorithms
(Setup, KeyGen, Encrypt, Decrypt):

e Setup(1*), where X is the security parameter, generates the global parameters param
of the scheme;

e KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private)
decryption key sk;

e Encrypt(pk, m, f) outputs a ciphertext ¢, on the message m, under the encryption key
pk, with the randomness 6. We also use Encrypt(pk, m) for the sake of clarity;

e Decrypt(sk, c) outputs the plaintext m, encrypted in the ciphertext ¢ or L.

Such an encryption scheme has to satisfy both Correctness and Indistinguishability under
Chosen Plaintext Attack (IND-CPA) security properties.

Correctness: For every), every param < Setup(1}), every pair of keys (pk, sk) generated
by KeyGen, every message m, we should have Pr[Decrypt(sk, Encrypt(pk,m,6)) = m| =
1 — negl(\) for negl(-) a negligible function, where the probability is taken over varying
randomness 6.

IND-CPA [17]: This notion formalized by the game depicted in Fig. 1, states that an
adversary should not be able to efficiently guess which plaintext has been encrypted even
if he knows it is one among two plaintexts of his choice.

Exppie’ (A)

. param <« Setup(1*)

. (pk, sk) <— KeyGen(param)
(mg, m;) < A(FIND : pk)
. ¢* < Encrypt(pk, my, 6)
b« A(GUESS : c*)

. RETURN ¥

D U W N

Figure 1: Game for the IND-CPA security of an asymmetric encryption scheme.

In the following, we denote by |A| the running time of an adversary .A. The global
advantage for polynomial time adversaries running in time less than ¢ is:

AGVBRECPA(1) = s AGVEREEPA (), 0

where Advpye P4 (A) is the advantage the adversary A has in winning game Expiez"(A):
AdVIIE:CPA(A) — [Pr{Explite! (A) — 1] — PrlExpte’(A) — 1.)

15

2.3 Presentation of the scheme

In this section, we describe our proposal: HQC. We begin with the PKE version, then
describe the transformation of [19] to obtain a KEM-DEM that achieves IND-CCA2. Pa-
rameter sets can be found in Sec. 2.7. We further use M to denote the message space. Let
w be a positive integer, we denote by R, := {v € R such that w(v) = w} the set of vectors
having Hamming weight w.

2.3.1 Public key encryption version (HQC.PKE)

Presentation of the scheme. HQC uses two types of codes: a decodable [n, k| code C,
generated by G € F5*" and which can correct at least A errors via an efficient algorithm
C.Decode(+); and a random double-circulant [2n, n] code, of parity-check matrix (1,h). The
four polynomial-time algorithms constituting our scheme are depicted in Fig. 2.

e Setup(1?*): generates and outputs the global parameters param =
(n7k7A7w7wr7we)'

e KeyGen(param): samples h & R, the generator matrix G € F5*™ of C, (x,y) &
Ruw X Ry, sets sk = (x,y) and pk = (h,s =x+ h-y), and returns (pk, sk).

e Encrypt(pk, m): generates e & Rue, I = (r1,12) & Rue X Ry, setsu=r;+h-ry
and v=mG +s-ry + e, returns ¢c = (u, V).

e Decrypt(sk, c): returns C.Decode(v —u -y).

Figure 2: Description of our proposal HQC.PKE.

Notice that the generator matrix G of the code C is publicly known, so the security of
the scheme and the ability to decrypt do not rely on the knowledge of the error correcting
code C being used.

C is instantiated using concatenated Reed-Muller and Reed-Solomon codes: see section
2.5 for more details. Furthermore, we will have G € F5'"* and h € F}, with n the smallest
primitive prime greater than nyny. All computations are made in the ambient space F} and
the remaining ¢ = n — nyny bits are truncated where useless.

In particular, the ciphertext will be (u, \7(5)), where v(¥ denotes the ¢ first coordinates
(bits) of v. For sake of readability, we keep the notation v even for the truncated vector,
and explicitly mention the length of the vectors.

In the secret key (x,y) is represented as (seedl) where seedl is used to generate x
and y. The public key pk = (h, s) is represented as pk = (seed2,s) where seed2 is used to
generate h.

Correctness. The correctness of our encryption scheme clearly relies on the decoding
capability of the code C. Specifically, assuming C.Decode correctly decodes v —u -y, we

16

have:
Decrypt (sk, Encrypt (pk, m)) = m. (10)

And C.Decode correctly decodes v — u - y whenever

w(s-ra—u-y+e) <A (11)
w(x+h-y) ro—(r;+h-1r)-y+e) <A (12)
wx-rp—ri-y+e) <A (13)

In order to provide an upper bound on the decryption failure probability, an analysis of the
distribution of the error vector € = x-ry —ry -y + e is provided in Sec. 2.4.
2.3.2 KEM/DEM version (HQC.KEM)

Let £ be an instance of the HQC.PKE cryptosystem as described above. Let Gand K be
hash functions, the KEM-DEM version of the HQC cryptosystem is described in Figure 3.

o Setup(1*): as before, except that k will be the length of the shared key being
exchanged, typically k = 256.

e KeyGen(param): samples h & R, o & 5, the generator matrix G €]F’;X" of C,
sk = (x,y,0) & R X Ry x FE sets pk = (h,s = x + h - y), and returns (pk, sk).

o Encapsulate(pk): generates m <& F%, salt <~ F1. Derive the randomness 6 <
G(m||pk||salt) and use 0 to generates (e, ry,rs) such that w(e) = we and w(r;) =
w(ry) = wy, setsu=r;+h-ry and v=mG+s-ry+e, sets ¢ = (u,v). Computes
K <+ K(m,c), and return (K, c, salt).

e Decapsulate(sk, c, salt): Decrypt m’ < Decrypt(sk,c), compute the randomness
0" < G(m’||pk]||salt), and (re-)encrypt m’ by using 6’ to generates (€, 1}, r}) such
that w(e’) = we and w(r})) = w(rh) = wy, sets W' =1} +h-r, and v = m'G +
s-rh+ €, sets ¢ = (0, V). fm' = 1 or ¢c # ¢ then K + K(o,c). Otherwise,
K + K(m,c).

Figure 3: Description of our proposal HQC.KEM derived from Figures 2, 7 and 8.

According to [19], the HQC.KEM is IND-CCA2. More details regarding the security
proof is provided in section 5.2.

Security concerns and implementation details.

The concrete instantiation of G and K is defined using SHAKE256 with 512 bits output
customized with a domain separation tag that we denote SHAKE256-512. In particular, we
have SHAKE256-512(-||G_FCT_DOMAIN) for G(-) and SHAKE256-512(-||K_FCT_DOMAIN) for
K (+) where the final constant (G_FCT_DOMAIN or K_FCT_DOMAIN) is encoded over one byte.

17

2.3.3 A hybrid encryption scheme (HQC.HE)

NIST announced that they will be using generic transformations to convert any IND-CCA2
KEM into an IND-CCA2 PKE although no detail on these conversions have been provided.
We therefore refer to HQC.HE to designate the PKE scheme resulting from applying a
generic conversion to HQC.KEM.

2.4 Analysis of the error vector distribution for Hamming distance

In this section we provide a more precise analysis of the error distribution approximation
compared to the Round 2 submission. This analysis is taken from [3]. We first compute
exactly the probability distribution of each fixed coordinate e}, of the error vector

€ =x-ry-r-yt+te= (..., 1)
We obtain that every coordinate e} is Bernoulli distributed with parameter p* = Ple} = 1]
given by Proposition 2.4.2.

To compute decoding error probabilities, we will then need the probability distribution
of the weight of the error vector € restricted to given sets of coordinates that correspond
to codeword supports. We will make the simplifying assumption that the coordinates e}
of € are independent variables, which will let us work with the binomial distribution of
parameter p* for the weight distributions of €. In other words we modelize the error vector
as a binary symmetric channel with parameters p*. This working assumption is justified by
remarking that, in the high weight regime relevant to us, since the component vectors x,y, e
have fixed weights, the probability that a given coordinate e takes the value 1 conditioned
on abnormally many others equalling 1 can realistically only be < p*. We support this
modeling of the otherwise intractable weight distribution of € by extensive simulations:
these back up our assumption that our computations of decoding error probabilities and
DFRs can only be upper bounds on their real values.

The vectors x,y,r;,rs, e have been taken uniformly random and independently chosen
among vectors of weight w, w, and we. We first evaluate the distributions of the products
X-r9and ry-y.

Proposition 2.4.1. Let x = (xg,...x,_1) be a random vector chosen uniformly among all
binary vectors of weight w and let v = (ro,...,m,—1) be a random vector chosen uniformly
among all vectors of weight w, and independently of x. Then, denoting z = x - r, we have
that for every k € {0,...n — 1}, the k-th coordinate z, of z is Bernoulli distributed with
parameter p = P(z, = 1) equal to:

1
P= 7y E : Ce
()() 1<f<min(w,wy)
¢ odd

where Co = (7) (3,70) (1,7)-

18

Proof. The total number of ordered pairs (x,r) is (Z) (u’fr) Among those, we need to count
how many are such that z; = 1. We note that

Lk = E ZiTy.

i+j=k mod n
0<i,j<n—1
We need therefore to count the number of couples (x,r) such that we have x;7,_; = 1 an
odd number of times when i ranges over {0,...,n — 1} (and k& — i is understood modulo
n). Let us count the number C; of couples (x,r) such that z;r,_; = 1 exactly ¢ times. For
¢ > min(w, w,) we clearly have C; = 0. For ¢ < min(w,w,) we have (7) choices for the
set of coordinates ¢ such that x; = r,_; = 1, then (Z:ﬁ) remaining choices for the set of
coordinates ¢ such that x; = 1 and r,_; = 0, and finally (3;“’2) remaining choices for the set
of coordinates 7 such that x; = 0 and r,_; = 1. Hence C, = (Tg) (Z:i) (Zr__“;) The formula
for p follows.
Let x,y (resp. ry,rs2) be independent random vectors chosen uniformly among all binary
vectors of weight w (resp. wy).
By independence of (x,ry) with (y,r;), the k-th coordinates of x - ry and of ry - y are
independent, and they are Bernoulli distributed with parameter p by Proposition 2.4.1.
Therefore their modulo 2 sum t = x - ry — ry - y is Bernoulli distributed with

{Pr[tk = 1] = 25(1 — p),

N (14)
Prlt;, = 0] = (1 — p)* + p*

Finally, by adding modulo 2 coordinatewise the two independent vectors e and t, we
obtain the distribution of the coordinates of the error vector € = x-ry —r; -y + e given
by the following proposition:

Proposition 2.4.2. Let x,y,rq, 19, € be independent random vectors with uniform distribu-
tions among vectors of fixed weight w for x,y, among vectors of weight w, for ri,rs, and

among vectors of weight we fore. Let e =x-ro—r1-y+e=(ep,...,e,_1). Then for any
k=0...n—1, the coordinate €} has distribution:
Pifel, = 1] = 201 P)(1 = %) + (1 = 5 + 77 2,)
Prlej, = 0] = (1 —5)* +5%) (1 — %) + 2p(1 — p) .

Proposition 2.4.2 gives us the probability that a coordinate of the error vector €’ is
1. In our simulations, which occur in the regime w = as/n with constant «, we make
the simplifying assumption that the coordinates of € are independent, meaning that the
weight of € follows a binomial distribution of parameter p*, where p* is defined as in Eq.
(15): p* = 2p(1 — p)(1 — “=) + ((1 — p)* + p*) “e. This approximation will give us, for
0<d<min(2 X w X wy + we, n),

n

peo(e) = = (1) 0" -) (10

19

Supporting elements for our modelization: we give in Fig. 4 simulations of the
distribution of the weight of the error vector together with the distribution of the associated
binomial law of parameters p*. These simulations show that error vectors are more likely to
have a weight close to the mean than predicted by the binomial distribution, and that on the
contrary the error is less likely to be of large weight than if it were binomially distributed.
This is for instance illustrated on the parameter set corresponding to real parameters used
for 128 bits security. For cryptographic purposes we are mainly interested by very small
DFR and large weight occurrences which are more likely to induce decoding errors. These
tables show that the probability of obtaining a large weight is close but smaller for the
error weight distribution of €’ rather than for the binomial approximation. This supports
our modelization and the fact that computing the decoding failure probability with this
binomial approximation permits to obtain an upper bound on the real DFR. This will be
confirmed in the next sections by simulations with real weight parameters (but smaller
lengths).

Examples of simulations. We consider a parameter set that corresponds to cryptographic
parameters and for which we simulate the error distribution versus the binomial approxi-
mation together with the probability of obtaining large error weights. In order to match
definition 2.1.18 we computed vectors of length n and then truncated the last [= n —niny
bits before measuring the Hamming weight of the vectors.

Parameter set | w | we = Wy n n1N9 p
hqc-128 66 75 17669 | 17664 | 0.3398

Simulation results

Simulation results are shown figure 4. We computed the weights such that 0.1%, 0.01%
and 0.001% of the vectors are of weight greater than this value, to study how often extreme
weight values occur. Results are presented table 1.

| [0.1% [0.01% | 0.001% | 0.0001% |

Error vectors 6169 | 6203 6232 6257
Binomial approximation | 6197 | 6237 6272 6301

Table 1: Simulated probabilities of large weights for hqc-128 for the distributions of the
error vector and the binomial approximation

20

140000

HQC simulation +
Binomial distribution --------
120000 |- m 1
7oy
100000 |- £ g4 4
. nE
4 W
£
@ 80000 |- E2 % i
o i *
c E H
[+ 4+
O 60000 [F 3 i
& *
Es %
S T
40000 | 7 ke .
o 5
20000 |- 7 R
0 il | | | | | [
5800 5850 5900 5950 6000 6050 6100 6150 6200

Weight

Figure 4: Comparison between error € generated using hqc-128 parameters and its binomial
approximation.

2.5 Decoding with concatenated Reed-Muller and Reed-Solomon
codes

In this section taken from [3] we propose to consider a new decoding algorithm based on
Reed-Muller and Reed-Solomon concatenated codes.

2.5.1 Definitions

Definition 2.5.1 (Concatenated codes). A concatenated code consists of an external code
(e, ke, d.] over F, and an internal code [n;, ki, d;] over Fo, with ¢ = 2%. We use a bi-
jection between elements of F, and the words of the internal code, this way we obtain a
transformation:

. N
Fyo — Ty
where N = nen;. The external code is thus transformed into a binary code of parameters

[N = NeNy, K = kekia D 2 dedi}-

For the external code, we chose a Reed-Solomon code of dimension 32 over Fo56 and,
for the internal code, we chose the Reed-Muller code [128,8,64] that we are going to du-
plicate 3 or 5 times (i.e duplicating each bit to obtain codes of parameters [384, 8,192 and
(640, 8, 320]).

21

We perform maximum likelihood decoding on the internal code. Doing that we obtain
a vector of Fje that we then decode using an algebraic decoder for the Reed-Solomon code.

2.5.2 Reed-Solomon codes

Let p be a prime number and ¢ is any power of p. Following [21], a Reed-Solomon code
with symbols in Fy» has the following parameters:

e Block length n =¢g—1

e Number of parity-check digits n — k = 26, with ¢, the correcting capacity of the code
and k£ the number of information bits

e Minimum distance d,;, = 20 + 1

We denote this code by RS[n, k, d;in. Let a be a primitive element in Fom, the generator
polynomial g(x) of the RS[n, k, §] code is given by:

g(z) = (x +a)(x +a?) - (z + o)

Depending on HQC parameters, we construct shortened Reed-Solomon (RS-S1, RS-S2
and RS-S3) codes such that k is equal to 16, 24 or 32 from the following RS codes RS-1,
RS-2 and RS-3 (codes from [21]).

’Code\n\k\é‘
RS-1 | 255|225 15

RS-2 | 255 | 223 | 16
RS-3 | 255 | 197 | 29
RS-SL| 46 | 16 | 15
RS-S2 | 56 | 24 | 16
RS-S3| 90 | 32 | 29

Table 2: Original and shortened Reed-Solomon codes.

The shortened codes are obtained by subtracting 209 from the parameters n and k of
the code RS-1 and subtracting 199 from the parameters n and k of the code RS-2 and by
subtracting 165 from the parameters n and k of the code RS-3. Notice that shortening
the Reed-Solomon code does not affect the correcting capacity, thus we have the following
shortened Reed-Solomon codes :

e RS-S1[46 = 255 — 209, 16 = 225 — 209, 31]
e RS-S2[56 = 255 — 199, 24 = 223 — 199, 33|

e RS-S3|90 = 255 — 165, 32 = 197 — 165, 49|

22

In our case, we will be working in Fom with m = 8. To do so, we use the primitive
polynomial 1 + 2% + 23 + 2% + 2% of degree 8 to build this field (polynomial from [21]). We
denote by ¢1(x), go(z) and g3(x) the generator polynomials of RS-S1, RS-S2 and RS-S3
respectively, which are equal to the generator polynomials of Reed-Solomon codes RS-1,
RS-2 and RS-3 respectively. We precomputed the generator polynomials g;(x), g2(x) and
g3(x) of the code RS-S1, RS-S2 and RS-S3 and we included them in the file parameters.h.
One can use the functions provided in the file reed_solomon.h to reconstruct the generator
polynomials for those codes.

Generator polynomial of RS-1. ¢;(z) = 9 + 69z + 15322 + 11623 + 176z* + 1172° +

11128 + 7527 + 7328 + 23327 + 242210 + 2332 + 6522 + 2102 + 2124 4+ 139215 4+ 103216 +
1732 + 672" + 1182 + 105220 + 21022 + 174222 + 110223 + 74224 + 6922° + 228226 +
82227 4 25522 + 18122 + 2%,

Generator polynomial of RS-2. gy(z) = 45 + 216z + 23922 + 242° + 253z* + 10425 +

2725 4+ 4027 + 10728 + 5022 + 163210 + 2102 + 227212 4+ 1342 + 2242 + 15821° + 119216 +
13217 4+ 158218 4+ 1219 + 238220 4+ 164221 + 82422 + 43223 + 15224 4+ 232225 4+ 246226 + 142227 +
5022 + 18922 + 29230 4 232231 + 232

Generator polynomial of RS-3. g3(x) = 49 + 167z + 4922 + 392 + 2002 + 1212° +

12425 + 9127 + 24028 + 632° + 148210 + 712 + 15022 + 123213 4+ 872 + 1012 + 32216 4
215217 + 159218 + 712 + 20122 + 11522 + 97222 + 2102 + 1862 + 18322° + 141225 +
21727 + 1232% + 122% + 31239 + 24323! + 180232 + 219233 + 152231 + 239235 + 99236 +
141237 + 4238 4 2462%° + 191240 + 1442 + 8242 + 232243 + 472 + 2724 + 141246 + 178247 +
13028 + 6424 4 124259 4+ 4725 + 39252 + 1882%% + 2162°* + 482%° + 19926 + 187257 + 2°8.

2.5.3 Encoding shortened Reed-Solomon codes

In the following we present the encoding of Reed-Solomon codes which can also be used
to encode shortened Reed-Solomon codes. We denote by u(z) = ug + -+ + U121 the
polynomial corresponding to the message u = (ug, - ,ux_1) to be encoded and g(x) the
generator polynomial. We use the systematic form of encoding where the rightmost k
elements of the code word polynomial are the message bits and the leftmost n — k bits are
the parity-check bits. Following [21], the code word is given by ¢(x) = b(x)+2"*u(z), where
b(x) is the reminder of the division of the polynomial 2" *u(z) by g(z). In consequence,
the encoding in systematic form consists of three steps :

1. Multiply the message u(z) by 2",
2. Compute the remainder b(z) by dividing 2" "u(z) by the generator polynomial g(z).

3. Combine b(x) and " *u(z) to obtain the code polynomial c(x) = b(z) + 2" Fu(z).

23

2.5.4 Decoding shortened Reed-Solomon codes

The decoding of classical Reed-Solomon codes can be used to decode shortened Reed-
Solomon codes. For sake of simplicity, we will detail the process of decoding classical Reed-
Solomon codes. Following [21], consider the Reed-Solomon code defined by [n, k, d;nin], with
n=2"—1 (m > 0 of positive integer) and suppose that a codeword v(z) = vg+vix+ -+
Un—12" 1 is transmitted. We denote r(z) =ro+mz+-+ rn_12™! the received word,
potentially altered by some errors.

We denote the error polynomial e(x) = ey + e;x + - - - + e,_12" !, meaning that there is
an error in position ¢ whenever e; # 0. Hence, r(x) = v(x) + e(x).

We define the set of syndromes S;, S, - -+ ,Sos as S; = r(a’), with a being a primitive
element in Fym. We have that r(a') = e(a), since v(a’) = 0 (v is a codeword). Suppose

that e(z) has t errors at locations ji, -, ji, t.e. e(z) = €;27 +e;,2% + -+ ¢;,x7. We
obtain the following set of equations, where o', a’?,--- a7t are unknown:
(Ji J2 Jt
S1 = et +ej,al? -+ e

52 = €5 (Oéjil)2 + €4y (Oﬂ:z)2 +oee At €jy (O‘J:t)Z
S3 = €5 (Oéjl)g + €4y <&g2)3 Tt €jy (a]t>3

Sas = e, (@) +ej,(a?2)? 4+ -+ ¢j,(adt)?

The goal of a Reed-Solomon decoding algorithm is to solve this system of equations.
We define the error location numbers by 8; = /i, which indicate the location of the errors.
The equations above, can be expressed as follows:

(

S1 = epfritepbet - +e,b
SQ = ej1612 + 6j2522 + ejtﬁf
SS = €j15§)+€j25§ + e +€jt6§
525 = €5 125+ej2 226+"'+ejt 1&26

\

we define the error location polynomial as:

o(z) = (1+pbx)(1+ faz)--- (14)
= l4+ox+0r’+ - +ozt

We can see that the roots of o(x) are 8,1, 85", -+, B; " which are the inverses of the
error location numbers. After retrieving the coefficients of o(z), we can compute the error
values. Let

Z(x) =14 (S1+o1)r+ (S + 015 + 02)562 + o+ (St 0151 + 0259+ - F Ut)flit

The error value at location f; is given by |[5]

24

_ 287
H(l + BB

=1
il

€

The decoding is completed by computing r(z) — e(x).
We can summarize the decoding procedure by the following steps:

1. The first step is the computation of the 20 syndromes using the received polynomial.
The syndromes are computed in a classical way by evaluating r(a’) for each value of
i.

2. The second step is the computation of the error-location polynomial o(z) from the
29 syndromes computed in the first step. Here we use Berlekamp’s algorithm [21].

3. The third step is to find the error-location numbers by calculating the roots of the
polynomial o(x) and returning their inverses. We implement this step with an additive
Fast Fourier Transform algorithm from [15].

4. The fourth step is the computation of the polynomial Z(z).
5. The fifth step is the computation of the error values.

6. The sixth step is the correction of errors in the received polynomial.

2.5.5 Duplicated Reed-Muller codes

For any positive integers m and r with 0 < r < m, there exists a binary r'* order Reed-
Muller code denoted by RM (r,m) with the following parameters:

e Code length n = 2™

e Dimension k = Z::O (T)

e Minimum distance d,,;, = 2™ "

HQC uses duplicated Reed-Muller codes. In particular, we are using first-order Reed-
Muller denoted RM(1,7) which is the binary code [128, 8, 64].

Decoding the internal Reed-Muller code:

The Reed-Muller code of order 1 can be decoded using a fast Hadamard transform (see
chapter 14 of MacWilliams and Sloane for example). The algorithm needs to be slightly
adapted when decoding duplicated codes. For example, if the Reed-Muller is duplicated
three times, we create the function F : F3 — {3,1, -1, —3} where we started with trans-
forming each block of three bits zyxox3 of the received vector in

25

(=D + (=" + (=)™

We then apply the Hadamard transform to the function F. We take the maximum
value in ' and x € F} that maximizes the value of |F|. If F(z) is positive, then the
closest codeword is *G where G is the generator matrix of the Hadamard code (without
the all-one-vector). If F'(z) is negative, then we need to add the all-one-vector to it.

2.5.6 Encoding Duplicated Reed-Muller codes

Following [25], the encoding is done in classical way by using a matrix vector multiplication.
The codeword is then duplicated depending on the used parameter (see Table 3).

’ Scheme \ Reed-Muller Code \ Multiplicity \ Duplicated Reed-Muller Code ‘

hqe-128 [128, 8, 64] 3 [384, 8, 192]
hqe-192 [128, 8, 64] 5 [640, 8, 320]
hqc-256 [128, 8, 64] 5 [640, 8, 320]

Table 3: Duplicated Reed-Muller codes.

2.5.7 Decoding Duplicated Reed-Muller codes

Following [25] (Chapter 14), the decoding of duplicated Reed-Muller codes is done in three
steps:

1. The first step is the computation of the function F' described in Section 2.5.5. We
apply F' on the received codeword. We give details about how this process is done
where the multiplicity is equal to 2. Let v a duplicated Reed-Muller codeword, it can
be seen as v = (a1by, - - , an,by,,) where each a;, b; has 128 bits size (a; = (ajy, =+, Qijog)
and b; = (by,, -+ ,bi)). The transformation F' is applied to each element in v as
follows ((—1)%0 + (—1)%0, ... (—1)%es + (—1)b2s). The cases when multiplicity is
equal to 4 follow a similar process.

2. The second step is the computation of Hadamard transform which is the first phase
of the Green machine.

3. The third step is the computation of the location of the highest value on the output
of the previous step. This is the second phase of the Green machine. When the peak
is positive we add all-one-vector and if there are two identical peaks, the peak with
smallest value in the lowest 7 bits it taken.

26

2.5.8 Decryption failure rate analysis

In this section we analyze the DFR of the concatenated codes. We use the binomial law
approximation p* of the error vector of Section 2.4.

It is only possible to obtain an exact decoding probability formula for the Reed-Solomon
codes as for Reed-Muller codes we consider a maximum-likelihood decoding for which there
is no exact formula. We provide in the following proposition a lower bound on the decoding
probability in that case.

Proposition 2.5.1. [Simple Upper Bound for the DFR of the internal code]
Let p be the transition probability of the binary symmetric channel. Then the DFR of a
duplicated Reed-Muller code of dimension 8 and minimal distance d; can be upper bounded

by:

pi = 255 Z () —p)h—i

j=di/2

Proof. For any linear code C of length n, when transmitting a codeword c, the probability
that the channel makes the received word y at least as close to a word ¢/ = ¢ + x as ¢ (for
x a non-zero word of C' and w(x) the weight of x) is:

j>;x)/2 (w?))pi(l —p)".

By the union bound applied on the different non-zero codewords x of C', we obtain that
the probability of a decryption failure can thus be upper bounded by:

> 2 ()ra-nr
x€C,x#0 j>w(x)/2

There are 255 non-zero words in a [128,8,64] Reed-Muller code, 254 of weight 64 and

one of weight 128. The contribution of the weight 128 vector is smaller than the weight 64

vectors, hence by applying the previous bound to duplicated Reed-Muller codes we obtain

the result. O

Better upper bound on the decoding error probability for the internal code.
The previous simple bound pessimistically assumes that decoding fails when more than one
codeword minimizes the distance to the received vector. The following bound improves the
previous one by taking into account the fact that decoding can still succeed with probability
1/2 when exactly two codewords minimize the distance to the received vector.

Proposition 2.5.2. [Improved Upper Bound for the DFR of the internal code]
Let p be the transition probability of the binary symmetric channel. Then the DFR of a
Reed-Muller code of dimension 8 and minimal distance d; can be upper bounded by:

27

pi= Y, Wp(l—p" "

w=d; /2
where
n\ 1 d; d; SrdN [ds
2, = mi =255(' 255 ! s
win | ()55 (4)+ 3 ()(")
Jj=d;/2+1
di /2

(D)%))

Proof. Let E be the decoding error event. Let e be the error vector.

e Let A be the event where the closest non-zero codeword ¢ to the error is such that
d(e,c) = d(e,0) = w(e).

e Let B be the event where the closest non-zero codeword c¢ to the error vector is such
that d(e,c) < w(e).

o Let A’ C A be the event where the closest non-zero codeword ¢ to the error vector

is such that d(e,c) = w(e) and such a vector is unique, meaning that for every
c € C,c #c,c #0, we have d(e, c’) > w(e).

e Finally, let A” be the event that is the complement of A" in A, meaning the event
where the closest non-zero codeword c to the error is at distance |e| from e, and there
exists at least one codeword ¢/, ¢’ # ¢, ¢’ # 0, such that d(e, c’) = d(e, c) = w(e).

The probability space is partitioned as Q = AUBUC = AU A” U B U C, where C
is the complement of A U B. When C' occurs, the decoder always decodes correctly, i.e.
P(E|C) = 0. We therefore write:

P(E)= P(E|A"P(A")+ P(E|A")P(A") + P(E|B)P(B)

When the event A’ occurs, the decoder chooses at random between the two closest
codewords and is correct with probability 1/2, i.e. P(E|A") = 1/2. We have P(E|B) =1
and writing P(E|A”) < 1, we have:

P(E,) < zP(A,) + P(A,) + P(By)

= S(P(A,) + P(AL) + 5 P(AL) + P(B.)
P(E,) < zP(Ay) + %P(AZ}) + P(By) (17)

N =N~ =

28

where for X = A, A", A" F, the event X, signifies the intersection of the event X with the
event “w(e) = w”.
Now we have the straightforward union bounds:

P(B,) < 255 Z ()(])pw(l—p)"_w (18)

j=d;/2+1

with n = 2d; the length of the inner code, and where we use the convention that a binomial
coefficient (f;) = 0 whenever k£ < 0 or k > /.

P(A,) < 255 (dd/z) (w —d;i /2) Pl —p)n (19)

and it remains to find an upper bound on P(A").
We have:

A// ZP o/

where the sum is over pairs of distinct non-zero codewords and where:

Ace = {d(e,c) =d(e,c') =w(e)}

This event is equivalent to the error meeting the supports of ¢ and ¢’ on exactly half
their coordinates. All codewords except the all-one vector have weight d;, and any two
codewords of weight d; either have non-intersecting supports or intersect in exactly d/2
positions. P(A¢) is largest when ¢ and ¢’ have weight d and non-zero intersection. In this
case we have:

Pz =3 () (42 V-

oo\ J w—d;+]
Hence
di/2 3
255 d;/2 d;/2
P(AY) P(Ac e ’ ’ (1 —p) . 20
<> (2)§(j>(w_di+j)“ D (0)
Plugging 19, 18 and 20 into 17 we obtain the result. O

Remark 2.2. The previous formula permits to obtain a lower bound on the decoding prob-
ability; when the error rate gets smaller the bound becomes closer to the real value of the
decoding probability. For cryptographic parameters the approximation is less precise, which
means that the DFR obtained will be conservative compared to what happens in practice. We
performed simulations to compare the real decryption failure rate with the theoretical one
from proposition 2.5.1 for [512,8,256] and [640, 8,320] duplicated Reed-Muller codes using
p* wvalues from actual parameters. Simulation results are presented table /.

29

Security level p* Reed-Muller code | DFR from 2.5.2 | Observed DFR
128 0.3398 (384, 8,192] -10.79 -10.96
192 0.3618 (640, 8, 320] -14.14 -14.39
256 0.3725 (640, 8, 320] -11.30 -11.48

Table 4: Comparison between the observed Decryption Failure Rate and the formula from
proposition 2.5.1. Results are presented as log,(DFR).

From the previous lower bound p; on the probability decoding of the Reed-Muller codes
we deduce the decryption failure rate for these codes:

Theorem 2.3. Decryption Failure Rate of the concatenated code Using a Reed-Solomon

code [Ne, ke, de|r,s as the external code, the DFR of the concatenated code can be upper
bounded by:

i (nle>p§(1 — pi)re!

[=6e+1

Where d. = 26, + 1 and p; is defined as in proposition 2.5.1.

2.5.9 Simulation results

In Fig. 5, we tested the Decryption Failure rate of the concatenated codes against both
symmetric binary channels and HQC vectors, and compared the results with the theoretical
value obtained using proposition 2.5.1 and 2.3.

2.6 Representation of objects

Vectors. Elements of Fy, F5'™* and F} are represented as binary arrays.

Seeds. The considered seed-expander is based on the SHAKE256 function. It is initialized
with a byte string of length 40 which are used as the seed.

2.6.1 Keys and ciphertext representation

In the secret key (x,y) is represented as (seedl) where seedl is used to generate x and
y. The public key pk = (h,s) is represented as pk = (seed2,s) where seed2 is used
to generate h. The ciphertext c is represented as (u, v, salt) where salt is generated using
SHAKE256-512. The secret key has size 404 [k/8] bytes, the public key has size 40+ [n /8]
bytes and the ciphertext has size [n/8] + [niny/8] + 16 bytes.

30

DFR comparison
-2 T

Theoretiéal —t
Binomial ---+---
-4 HQC -+ A

DFR
o
T

22 I I I I I I I k
32 32.5 33 33.5 34 34.5 35 35.5 36

NRS

Figure 5: Comparison between the Decryption Failure Rate from 2.3 (Theoretical) and the
actual Decryption Failure Rate of concatenated codes against approximation by a binary
symmetric channel (Binomial) and against HQC error vectors (HQC). Parameters simulated
are derived from those of HQC for 128 security bits: w = 66, w, = we = 75, a [384,8,192]
duplicated Reed-Muller code for internal code and a [NRS, 16] Reed-Solomon code for
external code.

2.6.2 Randomness and vector generation

Random bytes are generated using the SHAKE256 based shake_prng or seedexpander
functions. The shake_prng function is used to generate seedl, seed2, m as well as salt.
The seedexpander function is used to generate x, y (using seed1l as seed), h (using seed?2
as seed) and ry, ro, € (using 6 as seed). For key generation, the randomized access is done
using the seedexpander with seedl as seed. For encryption process, randomized access is
done using the seedexpander function with 6 as seed.

Random vectors are sampled uniformly from F%, F2 or from F} with a given Hamming
weight. Sampling from F5 and F% is performed by filling the mathematical representation
of the vector with random bits. Sampling a vector from F} of a given weight starts by
generating the support using Algorithm 1. Next, the sampled support is converted to an n-
dimensional array. The distribution of the resulting vector is biased away from the uniform
distribution, however we show in section 5.3, that this bias does not affect the security of
the scheme.

31

Algorithm 1: Fixed Hamming weight vector sampling (Algorithm 5 in |31])

Input: n,w, seed rand(n, prng);
Output: w distinct elements of {0,--- ,n} 1: z < randBits(B, prng)
1: prng < prng-init(seed) 2: return z mod n

2: for i = w — 1 downto 0 do

3: [+ i+ rand(n — i, prng)

4: pos[i] < (I € {pos[jl,i <j<t}) ?i:1
5: return pos[0], - - -, pos[w — 1]

2.7 Parameters

In this section, we specify which codes are used for HQC and give concrete sets of parame-
ters.

We propose several sets of parameters, targeting different levels of security with DFR
related to these security levels. The proposed sets of parameters cover security categories
1, 3, and 5 (for respectively 128, 192, and 256 bits of security). For each parameter set, the
parameters are chosen so that the minimal workfactor of the best known attack exceeds the
security parameter. For classical attacks, best known attacks include the works from [9, 8,
12, 4] and for quantum attacks, the work of [7]. We consider w = O (y/n) and follow the
complexity described in [10] (see Sec. 6 for more details).

2.7.1 Concatenated codes

When we use a Concatenated code (Def. 2.5.1). A message m € F% is encoded into m; € F}}
with the Reed-Solomon code, then each coordinate m;; of m; is encoded into m;; € [F3?
with the duplicated Reed-Muller code. In the latter step, the encoding is done in two
phases. First, we use the RM(1,7) to encode m;; and we obtain m;; € F3?®. Then, m,
is duplicated depending on the multiplicity of the Reed-Muller code (see Tab. 3).

To match the description of our cryptosystem in Sec. 2.3, we have mG = m =
(Myg,...,My,, 1) € F3'"2. To obtain the ciphertext, r = (r,,rs) L R2ande & R
are generated and the encryption of misc=(u=r;+h-ro,v=mG +s-ry, +e).

In Tab. 5, ny denotes the length of the Reed-Solomon code, ny the length of the Reed-
Muller code so that the length of the concatenated code C is nyng (the ambient space has
length n, the smallest primitive prime greater than nins to avoid algebraic attacks). w
is the weight of the n-dimensional vectors x, y, w, the weight of ry, and r, and similarly
we = w(e) for our cryptosystem.

3 Performance Analysis

This section provides performance measures of our HQC.KEM implementations.

32

’Instance \ nq \ o \ n \ w \wr = we | security Drail

hqce-128 | 46 | 384 | 17,669 | 66 75 128 <271
hqe-192 | 56 | 640 | 35,851 | 100 114 192 < 27192
hqe-256 | 90 | 640 | 57,637 | 131 149 256 < 27256

Table 5: Parameter sets for HQC. The concatenated code used is consists of a [ng, 8, ns/2]
Reed-Muller code as the internal code, and a [ny, k,n; — k + 1] Reed-Solomon code as the
external code. The resulting public key, secret key and ciphertext sizes, are given in Tab. 6.
The aforementioned sizes are the ones used in our reference implementation except that we
also concatenate the public key within the secret key in order to respect the NIST API.

’ Instance H pk size \ sk size \ ct size \ ss size ‘
hqe-128		2,249	56	4,497 [64
hqe-192		4,522 [64 [9,042 [64		
hqe-256	7,245 [72 [14485[64			

Table 6: Sizes in bytes for HQC (see section 2.6).

Benchmark platform. The benchmarks have been performed on a machine that has
32GB of memory and an Intel® Core™ i7-11850H CPU @ 2.50GHz for which the Hyper-
Threading, Turbo Boost and SpeedStep features were disabled. The scheme have been
compiled with gcc (version 11.3.0). For each parameter set, the results have been obtained
by computing the mean from 1000 random instances. In order to minimize biases from
background tasks running on the benchmark platform, each instances have been repeated
100 times and averaged.

Constant time. The provided optimized AVX implementations have been implemented in
constant time. We have thoroughly analyzed the code to check that only unused randomness
(i.e. rejected based on public criteria) or otherwise nonsensitive data may be leaked. The
reference implementation is provided to help understanding the scheme and thus is not
implemented to be constant time in any way.

3.1 Reference implementation

The reference implementation is written in C++ and have been compiled with g++ (version
8.2.1) using the compilation flags -03 -pedantic -pthread. The following third party
libraries have been used: gmp (version 6.1.2), NTL (version 11.5.1) [32] and GF2X (version
1.3.0). The performances of our reference implementation on the aforementioned benchmark
platform are described Tab. 7.

33

’ Instance H KeyGen \ Encaps \ Decaps ‘
hqe-128	187	419	833	
hqe-192 [422	946 [1662			
hqe-256		830	1833	3343

Table 7: Performance in kilocycles of the reference implementation for different instances
of HQC.

3.2 Optimized constant-time implementation

A constant-time optimized implementation leveraging AVX2 instructions have been

provided. Its performances on the aforementioned benchmark platform are de-
scribed in Tab. 9. The following optimization flags have been used during com-
pilation: -03 -std=c99 -funroll-all-loops -flto -mavx -mavx2 -mbmi -mpclmul

-pedantic -Wall -Wextra. There are two main differences between the reference and
the optimized implementation. Firstly, the multiplication of two polynomial is vectorized.
Secondly, we added a vectorized version of the Reed-Muller decoding algorithm.

In the sequel we give some details on the optimizations done in this version.

Multiplication over Fy[X]/(X™ — 1) (dense-dense multiplication) In this version
we do not take into account the sparsity of one of the polynomial. We use a classical dense-
dense multiplication to avoid some possible leakage of information. This multiplication is
done using a combination of Toom-Cook multiplication and Karatsuba multiplication.

About Toom-Cook multiplication over F,[X]| One wants to multiply two arbi-
trary polynomials over Fo[X]| of degree at most N — 1, using the Toom-Cook algorithm.
Several approaches have been extensively detailed in the literature. Let A and B be two
binary polynomials of degree at most N — 1. These polynomials are packed into a table of
64 bit words, whose size is [N/64]. Let t = 3n with n a value ensuring ¢t > [N/64]. Now,
A and B are considered as polynomials of degree at most 64 -t — 1. A and B are split into
three parts. One wants now to evaluate the result C' = A - B with

A=ag+a; X+ ay - X¥" € Fy[X],
B = by + by - X% 4 by - X704 € Fy[X],

(of maximum degree 64t — 1, and a;, b; of maximum degree 64n — 1) and,

C = ¢ + - X64n + Cs - X2~64n +03 . X3~64n + Cq - X4-64n c IFQ[X]

of maximum degree 6 - 64n — 2.

The "word-aligned" version evaluates the polynomial for the values 0, 1, z = X",
r+1=X"+1, oo, w being the word size, typically 64 in modern processors. Furthermore,
on Intel processors, one can set w = 256 to take advantage of the vectorized instruction set

34

AVX-AVX2 at the cost of a slight size reduction. After the evaluation phase, one performs
an interpolation to get the result coefficients.

For the evaluation phase, one has:

C(0) = ao-bo

c) = (a0 + a1 +a2)- (bo + b1 + b2)

C(x) = (ap+ai-z+az-z2)-(bo+b1-x+by-2?)

Clz+1) = (ao+ar-(z+1)+az-(x2+1)) (bo+b1-(z+1)+by (22 +1))
C(0) = as-by

The implementation of this phase is straightforward, providing that the multiplications
a; - b; is either another Toom-Cook or Karatsuba multiplication. One may notice that the
multiplications by x or 2% are virtually free word shifts.

Finally, the interpolation phase gives :

C(0)

(@2 +z+1)/(22+2)-C0O)+C()+C(x)/z+C(x+1)/(x+ 1)+ (22 +z) - C(c0)
1)/(z? + z) +C(@)/(z+1)+Cz+1)/z+ (z2 +z+ 1) C(c0)

0)/(z* +2) +C(1)/(2* + 2) + C(2)/(2? +) + C(z + 1)/ (2® + 2)

co
a1
c2
c3
cq

About Karatsuba algorithm Let A and B be two binary polynomials of degree
at most N — 1. These polynomials are packed into a table of 64 bit words, whose size is
[N/64]. Let t = 2" with r the minimum value ensuring ¢t > [N/64]. Now, A and B are
considered as polynomials of degree at most 64 -t — 1. The corresponding multiplication
algorithm is reproduce in Algorithm 2. In this algorithm, the polynomials A and B are
split into two parts, however, variants with other splits can be extrapolated. In particular,
we used a 3-part split (3-Karatsuba) as the Toom-Cook elementary multiplication for
hqc-128 and hqe-192, and a 5-part split (5-Karatsuba) as the Toom-Cook elementary
multiplication for hqc-256. The multiplication line 2 (denoted Mult64) is performed using
a single processor instruction (pclmul for carry-less multiplier): this is the case for the
Intel Cores i3, i5 and i7 and above.

Application to the HQC multiplication over Fy[X] The set of parameters for the HQC
protocols leads to the following construction of the multiplications over Fo[X] depicted in
table 8.

3.3 Hardware Implementation

We have implemented HQC in its entirety on an Artix-7 FPGA, using High-Level Synthe-
sis (HLS). In order to be compatible with HLS, we have produced an alternative version
of our software library, that can be compiled in C and run in software or transformed
by HLS into VHDL code. This greatly simplifies the maintainability of the code with
respect to a pure VHDL implementation. The implementation is available in the folder

35

Algorithm 2: KaratRec(A,B,t)

Require: A and B on t = 2" computer words.
Ensure: R=Ax B
1: if t=1 then

2:

10:
11:
12:
13:
14:

3
4
5:
6:
7
8
9

return (Mult64(A, B))

. else

// Split in two halves of word size ¢/2.
A= AO + :1:64t/2A1

B = BO + $64t/231

// Recursive multiplication

Ry < KaratRec(Ay, By, t/2)

Ry < KaratRec(Ay, By,t/2)

Ry < KaratRec(Ay + Ay, By + B1,t/2)

// Reconstruction

R+ Ry + (RU + Ry + RQ)X64t/2 + R1X64t
return (R)

end if

Table 9: Performance in kilocycles of the optimized implementation using AVX2 instructions

Table 8: Implementation of the multiplications over Fy[X]

Multiplication over Fo[X]

Version hqc-128 hqc-192 hqc-256
HQC Size (bits) 17669 35851 57637
Main multiplication | Toom3-Karat3 | Toom3-Karat3 | Toom-Cook 3
Size (bits) 18048 36480 59904
Elementary mult. 3-Karatsuba | 3-Karatsuba | 5-Karatsuba
Size (bits) 6144 12288 20480
’ Instance H KeyGen \ Encaps \ Decaps ‘
hqe-128		75	203	361
hqe-192	175	458	753	
hqe-256	356	883	1469	

for different instances of HQC.

Hardware_Implementation and has detailed readme files explaining its usage. It provides
a set of test benchs for the key generation, encapsulation and decapsulation functions that
verify that the hardware implementation provides exactly the same output as the reference

implementation.

36

The HLS-compatible C implementation® can be automatically translated in two VHDL
implementations, one high-throughput (called perf) and one compact. It is also possible
to implement only one function (key generation, encapsulation and decapsulation) or to
implement all of them with the benefit of resource sharing (i.e. the cost of implementing
the three functions together is quite below the sum of the costs of the functions taken
independently). For the moment we have only optimized and studied the performance for
the VHDL generated for HQC L1.

The performance figures can be resumed as follows: the perf implementation re-
quires 6.6k slices in an Artix-7 and provides key generation/encapsulation/decapsulation
in 0.27/0.52/1.2 milliseconds; the compact implementation requires 3.1k slices in the same
FPGA and provides the same functionalities in 4.8/12/16 milliseconds. More detailed
figures can be found in the following tables. First we provide the results for our perf
implementation.

HQC L1 function Area (slices) LUTs FF BRAM Cycles Freq. (MHz) Time (ms)

All functions 6.6k 20k 16k 12.5 320k 148 2.2
Keygen 3.9k 12k 9k 3 40k 150 0.27
Encaps 5.5k 16k 13k 5 89k 151 0.59
Decaps 6.2k 19k 15k 9 190k 152 1.2

As the figures highlight, the implementation is quite compact for a throughput oriented
implementation, requiring just six thousand slices, including the area taken by the Keccak
functions. The throughput obtained is also well balanced with a remarkably fast key genera-
tion. HLS has the reputation in cryptography of providing large and slow implementations.
Whereas the result is probably suboptimal and it is possible to provide a pure-VHDL im-
plementation that is faster and smaller, these figures show that HQC is hardware friendly
enough to have at the same time compacity, high throughput, and easy maintainability
with an HLS implementation.

The compact implementation increases significantly (around a factor ten) the time re-
quired by each function while dividing the surface required by two. It may be interesting
in niche settings in which the FPGA surface has other important usages and doing a few
transactions per second is enough (e.g. a satellite). The performance figures of the compact
implementation are as follows.

HQC L1 function Area (slices) LUTs FF BRAM Cycles Freq. (MHz) Time (ms)

All functions 3.1k 8.9k 6.4k 14 4.3m 132 32
Keygen 1.5k 4.7k 2.7k 3 630k 129 4.8
Encaps 2.1k 6.4k 4.1k 5) 1.5m 127 12
Decaps 2.7k 7.7k 5.6k 10.5 2.1m 130 16

2Note that the files of our implementation have the extension .cpp as we use C+-+ datatypes that make
data fiddling easier, but besides this bit manipulations inside the data all of our code is pure C as in the
original library.

37

4 Known Answer Test Values

Known Answer Test (KAT) values have been generated using the script provided by
the NIST. They are available in the folders KATs/Reference_Implementation/ and
KATs/Optimized_Implementation/.

In addition, examples with intermediate values have also been provided in these folders.

Notice that one can generate the aforementioned test files using respectively the kat
and verbose modes of our implementation. The procedure to follow in order to do so is
detailed in the technical documentation.

5 Security

5.1 IND-CPA security

In this section we prove the security of our encryption scheme viewed as a PKE scheme
(IND-CPA). The IND-CCA security of the KEM/DEM version is proved in section 5.2.

Theorem 5.1. The scheme presented above is IND-CPA under the assumption that both the
2-DQCSD with parity and 3-DQCSD with parity and erasures are hard.

Proof of Theorem 5.1. 'To prove the security of the scheme, we are going to build a sequence
of games transitioning from an adversary receiving an encryption of message mg to an
adversary receiving an encryption of a message m;, and show that if the adversary manages
to distinguish one from the other, then we can build a simulator breaking the DQCSD
assumption with parity and ¢ > 1 erasure(s), for QC codes of index 2 or 3 (codes with
parameters [2n,n| or [3n,n]), and running in approximately the same time. As for the seed
expansion, we assume that all the hash functions used can be modeled by random oracles.

Game G;: This is the real game, which we can state algorithmically as follows:

GameéKE,A(/\)

param < Setup(1?)

(pk, sk) <— KeyGen(param) with pk = (h,s =x+h-y) and sk = (x,y)
(mg, m;) < A(FIND : pk)

c* + Encrypt(pk, my) = (u,v) € Fy x Fj1"

b + A(GUESS : ¢*)

RETURN ¥

SRR S

Game G5: In this game we start by forgetting the decryption key sk = (x,y), and taking
s at random of same bit parity b = w + h(1) x w mod 2 as s’ =x+ h -y, and then
proceed honestly:

38

Game%KE,AO‘)

1. param < Setup(1?*)

2a. (pk,sk) <— KeyGen(param) with pk = (h, s" =x+h-y) and sk = (x,y)
2b. s & Fy,, for b=s'(1) mod 2

2¢. (pk,sk) < ((h, s),0)

3. (mg,m;) < A(FIND : pk)

4. ¢* < Encrypt(pk,mgy) = (u,v) € Fy x F5'"?

5. b + A(GUESS : c*)

6. RETURN o

The adversary has access to pk and c*. As he has access to pk and the Encrypt
function, anything that is computed from pk and c* can also be computed from just
pk. Moreover, the distribution of c* is independent of the game we are in. Indeed,
assume that my and m; have different bit parities. Without loss of generality, say
even for my and odd for m; and assume h has odd parity (a similar reasoning holds
for h of even parity). As the parities of w, w,, and we are all known (see Tab. 5), the
adversary knows the parity of m,G € [}, sro € F}, and e € F}. As the message is
encrypted in F5'"? the last ¢ = n — nyny bits of the vector v are truncated, yielding
a vector v € F5'" of unknown parity. This is illustrated in Fig. 6. Therefore we can
suppose the only input of the adversary is pk.

n = next primitive prime (ning)

v =(0100010. .. 0101...]
v =[0100010. .. [7
ning n—"ning

Figure 6: Truncation of vector v from F} to v € F;'"2.

Now suppose the adversary has an algorithm D), taking pk as input, that distinguishes
with advantage ¢ Game G| and Game G5, for some security parameter A\. Then he
can also build an algorithm Dpye p, which solves the 2-DQCSD(n, w, b) problem with
parity with the same advantage € as the game distinguisher.

D/PKE,m ((H,s))

Set param < Setup(1*)

pk <— (h,s)

b' < D,(pk)

If ¥ == 1 output QCSD

If ¥ == 2 output UNIFORM

Ol o=

Note that if we define pk as (h,y) and (H,y ') from a 2-QCSD(n,w,b) distribution
with parity, pk follows exactly the same distribution as in Game G;. On the other

39

hand if (H,y ") comes from a uniform distribution over F35 2 I3/, pk follows exactly
the same distribution as in Game G.

Thus we have:

Pr [Dpxep, (H,y ")) = QCSD|(H,y) + 2-QCSD(n, w,b)] =

Pr [D,(pk) = 1|pk from GamegKaA()\)} , and
Pr [Dpxep, (H,y ")) = UNIFORM|(H,y) «+ 2-QCSD(n, w,b)] =

Pr [Dy(pk) = 2|pk from Gamepye 4(\)]

(21)
(22)

And similarly when (H,y") is uniform the probabilities of Dby 5, outputs match
those of D, when pk is from Game%KE,A()\). The advantage of Dpyg p, is therefore
equal to the advantage of D,.

Game G3: Now that we no longer know the decryption key, we can start generating ran-
dom ciphertexts. So instead of picking correctly weighted ry, rs, e, the simulator now
picks random vectors in Fy,, and Fy .

GamegKE,AO‘)

1. param < Setup(1*)

2a. (pk,sk) <— KeyGen(param) with pk = (h,s" =x+ h-y) and sk = (x,y)
2b. s & Fy,, for b=s'(1) mod 2

2c. (pk,sk) < ((h,s),0)

3. (mgy, my) < A(FIND : pk)

da. e & F5 e, T = (T1,T2) & F5 e X F5 40
4b. u+ri+hroand v+ myG+s-r, +e
4c. ¢* « (u,v), with v truncated in F5*"?
5. b + A(GUESS : c*)

6. RETURN ¥

As we have)
T In 0 rot T

the difference between Game G5 and Game G5 is that in the former

In 0 I'Ot(h) T
((O I, rot(s)) (1, v = meG))
follows the 3-QCSD distribution with parity, and in the latter it follows a uniform

distribution (as ry and e are uniformly distributed over F% , with b odd) over F3}>7" x
(F5p X oy)-
Y1)

40

Note that an adversary is not able to obtain ¢* from pk anymore, as depending on
which game we are c* is generated differently. The input of a game distinguisher will
therefore be (pk, c*). As it must interact with the challenger as usually we suppose it
has two access modes FIND and GUESS to process first pk and later c*.

Suppose the adversary is able to distinguish Game G5 and Game G35, with a distin-
guisher D,, which takes as input (pk,c*) and outputs a guess b’ € {2,3} of the game
we are in.

Again, we can build a distinguisher Dpyg , that will break the 3-DQCSD(n, w, by, by)
with parity and ¢ = n — nyny erasures assumption from Setup(1*) with the same ad-
vantage as the game distinguisher. In the 3-DQCSD(n, w, b1, by) problem with parity,
matrix H is assumed to be of the form

(5 0 rov).

In order to use explicitly a and b we denote this matrix H,), instead of just H. We
will also note t = (ty, ts).

Dpye p, ((Ha,ba (t1, tz)T>>

1. param < Setup(1*)

2a. (pk,sk) < KeyGen (param) with pk = (h,s =x+h-y) and sk = (x,y)
2b. (pk,sk) < ((a,b),0)

(mgp, m;) < A(FIND : pk)

u < ty, v+ myG + ty and ¢* < (u,v)

. U + D, (GUESS : ¢¥)

. If ¥ == 2 output QCSD

. If ¥ == 3 output UNIFORM

O Ot W

The distribution of pk is unchanged with respect to the games. If <Ha’b, (tl,tg)T)
follows the 3-QCSD(n, w, by, by) distribution with parity, then

T I, 0 rot(a) T
(b1, t2) :(0 I, rgt(b))'(zl’z2’z3)

with w(z;) = w(z2) = w(zz) = w. Thus, c* follows the same distribution as in
Game G. If (Ha,b, (t1, tg)T> follows a uniform distribution with a of parity b; and

b of parity be, then c* follows the same distribution as in Game G3. We obtain
therefore the same equalities for the output probabilities of Dpyg p, and Dy as with
the previous games and therefore the advantages of both distinguishers are equal.

Game G4: We now encrypt the other plaintext. We chose r/, r5, € uniformly at random
in F3, and Fy,,and set u = r} + hr} and v =m;G +s -1} + €'. This is the last

41

game we describe explicitly since, even if it is a mirror of Game G, it involves a new
proof.

GameéKE,A(/\)

1. param < Setup(1*)

2a. (pk,sk) <— KeyGen(param) with pk = (h,s" =x+ h-y) and sk = (x,y)
2b. s & Fy,, with b= s/(1) mod 2

2¢. (pk, sk) <= ((h;s), 0)

3. (mp, m;) < A(FIND : pk)

da. & EFp, v = (Vy,r5) & Fp, xFp,

2,we?
4b. u 1) +hryand v+ m;G+s-r'y +¢€
4c. ¢+ (u,v)
5. b « A(GUESS : c*)
6. RETURN ¥

The outputs from Game G5 and Game G, follow the exact same distribution, and
therefore the two games are indistinguishable from an information-theoretic point of
view. Indeed, for each tuple (ry,rs, e) of Game G3, resulting in a given (u,v), there
is a one to one mapping to a couple (r},r),€') resulting in Game G, in the same
(u,v), namely rj = ry, v, = ry and € = myG + m;G. This implies that choosing
uniformly (ry, 13, €) in Game G5 and choosing uniformly (r}, 5, €’) in Game G, leads
to the same output distribution for (u,v).

Game G5: In this game, we now pick r, r}, € with the correct weight.

Game Gg: We now conclude by switching the public key to an honestly generated one.

We do not explicit these last two games as Game G4 and Game G5 are the equivalents
of Game G3 and Game G5 except that m; is used instead of mgy. A distinguisher
between these two games breaks therefore the 3-DQCSD with parity and ¢ = n —nino
erasures assumption too. Similarly Game G5 and Game G are the equivalents of
Game G, and Game G, and a distinguisher between these two games breaks the
2-DQCSD with parity assumption.

We managed to build a sequence of games allowing a simulator to transform a ciphertext
of a message mg to a ciphertext of a message m;. Hence, the advantage of an adversary
against the IND-CPA experiment is bounded as:

Advpice TA(A) <2 (AdVIQ'EIDDQCSD(,D,) + AdvlinDQCSD(D/)) : (23)
O

5.2 IND-CCA security
In this section we provide the IND-CCA proof for HQC.

42

5.2.1 HQC.PKE correction and DFR
Definition 5.2.1 (0-correct PKE [19]). A PKE (Keygen, Encrypt, Decrypt) is d-correct if

E (ma/\)/((Pr [Decrypt(sk, c) # m | ¢ < Encrypt(pk, m)]) <. (24)
me

where the expectation is taken over (pk,sk) <— KeyGen(param).

Definition 5.2.2 (J-correct KEM [19]). A KEM (Keygen, Encapsulate, Decapsulate) is 0-
correct if

(pk, sk) <— KeyGen(param);

Pr = {Decapsulate(sk, c)#K (K, c) « Encapsulate(pk)

] <0 (25)

In HQC.PKE the failure to decrypt a ciphertext (u,v) occurs if and only if
w(x-ro—r;-y+e)>A.

Note that the aforementioned equation does not depend on the message m. Therefore, the
probability in Equation 24 simplifies to

Pr [Decrypt(sk, c) # m | ¢ < Encrypt(pk, m)] < 0. (26)

Which is equivalent to the following probability that we analyze in section 2.5.8,

(x,y) &Ry x Ruy
Priw(x-ro—r;-y+e)>A eﬁRwe; < 0. (27)

r = (ry,ry) & R, X R,

5.2.2 HHK proof

Following the HHK framework [19], the public-key encryption scheme HQC.PKE is converted
to a deterministic public-key encryption scheme HQC.PKE; (see Figure 7). The security of
HQC.PKE; is reduced to the security of HQC.PKE. It is worth mentioning, that to prevent
multi-ciphertext attack, we introduced a minor modification to HQC.PKE; by incorporating
a public salt value into the ciphertext. So that the randomness 6 is computed from a salt
together with the public key. More formally we have the following Lemma.

Lemma 5.2 (Theorem 3.2 in [19]). If HQC.PKE is a d-correct public-key encryption scheme.
For any OW-PCA adversary B" against HQC.PKE, issuing at most qg queries to the sampler
(modeled as a random oracle), there exists an IND-CPA adversary A against HQC.PKE such
that

2-qg+1

AdVS\éVéEFﬁé\EI(B/) <qg-0+ W

13- AdVISSA(A). (28)

43

HHK defines a transform from a deterministic public-key encryption scheme HQC.PKE;
to a key encapsulation mechanism HQC.KEM* (see Figure 8). The IND-CCA security of
the HQC.KEM* is reduced to the OW-PCA security of HQC.PKE;, more formally, using
Theorem 3.4 in [19] we have the following result.

Lemma 5.3 (Theorem 3.4 in [19]). If HQC.PKE, is d-correct then HQC.KEM* is also o-
correct. For any IND-CCA adversary B against HQC.KEM?* issuing at most qc queries
to the key generation function IC (modeled as a random oracle), there exists an OW-PCA
adversary B' against HQC.PKE, such that

: dx -
Adv}ior ez (B) < ™ + Adviac e, (B'). (29)

Notice that we have an OW-PCA HQC.PKE; in the sense of HHK, therefore Lemmas 5.2
and 5.3 hold in their framework.

Theorem 5.4. If HQC.PKE is a d-correct public-key encryption scheme. Then, for all
IND-CCA adversary B against HQC.KEM? issuing at most qc queries to K and qg to G
(where K and G are modeled as random oracles), there exits an IND-CPA adversary A
against HQC.PKE, running about the same time, such that

2’Qg+1+qic

Advigeicas (B) < dg -8 + =0+ 3+ Advige e (4) (30)
Proof. The proof combines Lemmas 5.2 and 5.3. O

o Setup(1?): generates and outputs the global parameters param = (n, k, 6, w, Wy, We).

o KeyGen(param): samples h & R, the generator matrix G € F5*" of C, sk =
(x,y) & R X Ru, sets pk = (h,s =x+ h-y), and returns (pk, sk).
e Encrypt;(pk, m, salt): Derive the randomness 6 <+ G(ml||pk|salt) and use 6 to

generates (e, rq, ry) such that w(e) = we and w(r;) = w(ry) = wy, sets u = r;+h-ry
and v=mG + s -1y + e, returns ¢ = (u, v).

e Decrypt;(sk,c,salt): computes m < Decrypt(sk,c). If m = 1 or ¢ #
Encrypt, (pk, m, salt) then returns | otherwise returns m.

Figure 7: HQC.PKE; - A deterministic version of HQC.PKE

Theorem 5.5. If HQC.PKE is a §-correct public-key encryption scheme. For any IND-CCA
adversary B against HQC.KEM?* issuing at most q queries to K or G (where KK and G are
modeled as random oracles), there exists a distinguisher D against 2-DQCSD with parity
and 3-DQCSD with parity and erasures running in about the same time as B such that

2-qg6+1+qx

AdVINCCCA L (B) < qg - 6 +
M

HQC.KEM#*

+6- (AdvlzlyBcho(D) +Adv!3'§|DDQCSD<,D>>‘ (31)

44

Setup(1*): generates and outputs the global parameters param = (n, k, 8, w, wy, We).

KeyGen(param): samples h & R, the generator matrix G € F5*" of C, sk =
(x,y,0) &Ry x Ry X M, sets pk = (h,s =x+ h-y), and returns (pk, sk).

Encapsulate(pk): generates m & M, salt & Fi28, computes
¢ < Encrypt; (pk, m, salt). Computes K < K(m,c), and return (K c, salt).

Decapsulate(sk, ¢, salt): compute m < Decrypt, (sk, c, salt). If m # | then K <«
K(m,c) else K < K(o,c).

Figure 8: HQC.KEM# - HQC.KEM with implicit rejection from HQC.PKE;
Proof. The proof combines Theorems 5.1 and 5.4.]

5.3 Security proof with non uniform randomness generation

In this section, we show that there is no effective impact on the IND-CCA security of HQC
if vectors of small weights are sampled non uniformly, but close enough to uniform. In order

to do so, we use a similar approach as in [31]. Let us start by recalling the following results
from [31].

Proposition 5.3.1 (Proposition 3 in [31]). Let S be the distribution over R,, when sampling
using Algorithm 1, when x < randbits(B, prng) behaves as a random oracle which yields
uniformly distributed integers, 0 < x < 2B. for any integer B > 0, we have

w

1 ‘ Pr[e‘eng] w—1 A
(1 - n_;> = Tmin S $ S Tmaz = H (1 + (n Z) nl) ' (32)
2 Pr [e ’ e < Rw] i=0

Il
=)

i

where n; = 28 mod (n — i) for all i, 0 < i < w.

For HQC parameters, the ratios 7., and 7., are very close to 1 (see Table 10).

B =32
Security n Wy Tmin Trmax
128 17,669 75 0.99938 1.00061

192 35,851 114 0.99808 1.00188
256 57,637 149 0.99803 1.00202

Table 10: Bias between the uniform distribution and the output of Algorithm 1 for encryp-
tion randomness vectors of weight w, or we.

45

Using the following Lemma adapted from [31], we have that the advantage of any ad-
versary when a vector e of weight w is sampled following Algorithm 1 instead of uniform
distribution, cannot increase by a factor larger than 7,,,;.

Lemma 5.6 (Adapted from [31]). For any real-valued random variable V : R, — R, we
have
Z Pr [e ‘ e & Rw} Vie) < Tmax - Z Pr [e ‘ el Rw} V(e). (33)

eERw eERw

5.3.1 Arguments related to the security reduction

Following [31], we show that the IND-CCA security proof of HQC is not impacted when the
encryption randomness is sampled using Algorithm 1 rather than the uniform distribution.
More precisely, we check that Equations 28 and 29 still holds.

In Equation 29, the inequality holds independently of the distribution of the vectors
obtained from G. Therefore, this equation still holds if we switch to Algorithm 1. On the
other hand, and as shown in [31], to prove the inequality in Equation 28, one should revisit
the proof. Indeed, in the third term in Equation 28, the derandomization of HQC.PKE
would not lead to HQC.PKE,. We rather consider a variant HQC.PKE® (Figure 9) in which
the vectors (e, ry,ry) are sampled using Algorithm 1.

1. The first term ¢g - 6 in Equation 28 is related to the d-correctness and by consequence
to the DFR of our scheme. Let (e,ry,ry) be sampled using Algorithm 1 rather than
the uniform distribution. Then, § must be such that

(x,y) &R, X Ruy;
Pr=|w(x-rs—11-y+e)>A| el R,.: <o, (34)

r = (r1,12) g R X R,

Using Lemma 5.6, we have that the above probability, increases by a factor at most

Tmaw .

2. As showed [31], the middle term remain unchanged since it is independent of the
output distribution of G.

IND-CPA

hac.pres (A). Using Lemma 5.6, we

3. In the right most term, the advantage become Adv
have that Advier A s (A) < Trnae - AdViioe e (A)-

HQC.PKE®
5.3.2 Arguments related to the public key generation

Figure 10 presents two games associated with HQC, which vary solely in the method of
sampling for the secret key - either through uniform sampling or utilizing a specific distri-
bution.

46

Setup(1*): generates and outputs the global parameters param = (n, k, 8, w, wy, We).

KeyGen(param): samples h & R, the generator matrix G € F5*" of C, sk =
(x,y) &R, x R, sets pk = (h,s =x+h -y), and returns (pk, sk).

Encrypt(pk, m): generates e £ R, I = (r1,12) £ Ru, X Ry, setsu=r; +h-ry
and v=mG + s - ry + e, returns ¢c = (u,v).

Decrypt(sk, c¢): returns C.Decode(v —u - y).

Figure 9: HQC.PKE® a modified HQC.PKE with non uniform encryption randomness.

Lemma 5.7. If there is a polynomial time adversary A that can succeed in winning the
biased game Exp, with a probability of p, it can also achieve victory in game Exp’ with
probability < Tp where

Pr [(x, y) ‘ (x,y) E R, X ’Rw}
T= . : (35)
Pr |:(X y) ‘ (x,y) ¢ Ry X Rw}
Proof. The proof is straightforward application of Lemma 5.6.]

In the security games associated with public key encryption and key encapsulation
mechanism discussed in the sections 5.1 and 5.2, a single key pair is randomly selected at
the start of the game, and a single instance of distribution § is used. Consequently, no
adversary can achieve a success probability greater than a factor of 7 when a biased key is
utilized instead of a uniform one. Using Proposition 5.3.1 we have that

(n—1i)—mn;

w—1
T§2H(1—|—T>,ni:232mod(n—z’),0§i§w. (36)
=0

Exp, (biased key) Exp) (uniform key)
1. (x,y) ng X Ru||1. (x,¥) ﬁRw X R

Figure 10: Experiments using biased and uniform key sampling.

47

B =32
Security n w Timin Tmazx
128 17,669 66 0.99945 1.00054

192 35,851 100 0.99832 1.00166
256 27,637 131 0.99651 1.00353

Table 11: Bias between the uniform distribution and the output of Algorithm 1 for the
secret key vectors of weight w.

6 Known Attacks

The practical complexity of the SD problem for the Hamming metric has been widely studied
for more than 50 years. Most efficient attacks are based on Information Set Decoding, a
technique first introduced by Prange in 1962 [29] and improved later by Stern [33], then
Dumer [11]. Recent works [26, 4, 27| suggest a complexity of order 2¢@(1*nel1) " for some
constant ¢. A particular work focusing on the regime w = negl(n) confirms this formula,
with a close dependence between ¢ and the rate k/n of the code being used [10].

Specific structural attacks. Quasi-cyclic codes have a special structure which may
potentially open the door to specific structural attacks. A first generic attack is the DOOM
attack [30] which because of cyclicity implies a gain of O(y/n) (when the gain is in O(n) for
MDPC codes, since the code is generated by a small weight vector basis). It is also possible
to consider attacks on the form of the polynomial generating the cyclic structure. Such
attacks have been studied in [18, 24, 30|, and are especially efficient when the polynomial
2™ — 1 has many low degree factors. These attacks become inefficient as soon as ™ — 1 has
only two irreducible factors of the form (z — 1) and 2"~ ' 4+ 2" 2 + ... + 2 + 1, which is the
case when n is prime and ¢ generates the multiplicative group (Z/nZ)*. Such numbers are
known up to very large values. We consider such primitive n for our parameters.

Parameters and tightness of the reduction. We proposed different sets of parameters
in Sec. 2.7 that provide 128 (category 1), 192 (category 3), and 256 (category 5) bits of
classical (i.e. pre-quantum) security. The quantum-safe security is obtained by dividing
the security bits by two (taking the square root of the complexity) [7]. Best known attacks
include the works from |9, 8, 12, 26, 4, 27| and for quantum attacks, the work of [7]. In
the setting w = O (y/n), best known attacks have a complexity in 27(1=R)1+o() where
t = O(w) and R is the rate of the code [10]. In our configuration, we have ¢ = 2w and
R = 1/2 for the reduction to the 2-DQCSD problem, and ¢t = 3w, and R = 1/3 for the
3-DQCSD problem. By taking into account the DOOM attack [30], and also the fact that
we consider balanced vectors (x,y) and (ry, e, ry) for the attack (which costs only a very
small factor, since random words have a good probability to be balanced on each block),
we need to divide this complexity by approximately y/n (up to polylog factor). The term

o(1) is respectively log ((Z)Q/(Z"D and log <(£r)3/(3‘(’;;”r)) for the 2-DQCSD and 3-DQCSD

2w

48

problems. Overall our security reduction is tight corresponding to generic instances of the
classical 2-DQCSD and 3-DQCSD problems according to the best attacks of [10].

7 Advantages and Limitations

7.1 Advantages

The main advantages of HQC over existing code-based cryptosystems are:

e its IND-CPA reduction to a well-understood problem on coding theory: the Quasi-
Cyclic Syndrome Decoding problem,

e its immunity against attacks aiming at recovering the hidden structure of the code
being used,

e small public key size

e close estimations of its decryption failure rate.

efficient implementations based on classical decoding algorithms.

The fourth item allows to achieve a tight reduction for the IND-CCA2 security of the
KEM-DEM version through the recent transformation of [19].

7.2 Limitations

A first limitation to our cryptosystem (at least for the PKE version) is the low encryption
rate. It is possible to encrypt 256 bits of plaintext as required by NIST, but increasing this
rate also increases the parameters.

As a more general limitation and in contrast with lattices and the so-called Ring Learning
With Errors problem, code-based cryptography does not benefit from search to decision
reduction for structured codes.

References

[1] Carlos Aguilar-Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
and Gilles Zémor. Efficient encryption from random quasi-cyclic codes. IEEE Trans-
actions on Information Theory, 64(5):3927-3943, 2018. 9, 10

|2] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
92-110. Springer, Heidelberg, August 2007. 12, 14

49

131

4]

[5]
[6]

|7l

18]

19]

[10]

[11]

[12]

13

Nicolas Aragon, Philippe Gaborit, and Gilles Zémor. Hqc-rmrs, an instantiation of
the hqc encryption framework with a more efficient auxiliary error-correcting code.
https://arxiv.org/abs/2005.10741. 18, 21

Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2*/%°: How 1 + 1 = 0 improves information set decoding. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 520-536. Springer, Heidelberg, April 2012. 32, 48

Elwyn Berlekamp. Algebraic coding theory. World Scientific, 1968. 24

Elwyn R Berlekamp, Robert J McEliece, and Henk CA van Tilborg. On the in-
herent intractability of certain coding problems. IEEE Transactions on Informa-
tion Theory, 24(3):384-386, 1978. http://authors.library.caltech.edu/5607/1/
BERieeetit78.pdf. 12

Daniel J Bernstein. Grover vs. mceliece. In Post-Quantum Cryptography, pages 73-80.
Springer, 2010. https://cr.yp.to/codes/grovercode-20091123.pdf. 32, 48

Daniel J Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the
mceliece cryptosystem. In Post-Quantum Cryptography, pages 31-46. Springer, 2008.
https://cr.yp.to/codes/mceliece-20080807.pdf. 32, 48

Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum weight
words in a linear code: application to mceliece cryptosystem and to narrow-sense bch
codes of length 511. IEEE Transactions on Information Theory, 44(1):367-378, 1998.
http://ieeexplore.ieee.org/document/651067/. 32, 48

Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a
sub-linear error weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - Tth
International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Pro-
ceedings, volume 9606 of Lecture Notes in Computer Science, pages 144-161. Springer,
2016. https://hal.inria.fr/hal-01244886. 32, 48, 49

Ilya Dumer. On minimum distance decoding of linear codes. In Proc.
5th Joint Soviet-Swedish Int. Workshop Inform. Theory, pages 50-52, 1991.
https://www.researchgate.net/publication/296573348_0On_minimum_distance_
decoding_of_linear_codes. 48

Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based
cryptosystems. In Mitsuru Matsui, editor, ASTACRYPT 2009, volume 5912 of LNCS,
pages 88-105. Springer, Heidelberg, December 2009. 32, 48

Philippe Gaborit. Shorter keys for code based cryptography. In Proceedings of the
2005 International Workshop on Coding and Cryptography (WCC 2005), pages 81-91,
2005. http://www.unilim.fr/pages_perso/philippe.gaborit/shortIC.ps. 1]

20

https://arxiv.org/abs/2005.10741
http://authors.library.caltech.edu/5607/1/BERieeetit78.pdf
http://authors.library.caltech.edu/5607/1/BERieeetit78.pdf
https://cr.yp.to/codes/grovercode-20091123.pdf
https://cr.yp.to/codes/mceliece-20080807.pdf
http://ieeexplore.ieee.org/document/651067/
https://hal.inria.fr/hal-01244886
https://www.researchgate.net/publication/296573348_On_minimum_distance_decoding_of_linear_codes
https://www.researchgate.net/publication/296573348_On_minimum_distance_decoding_of_linear_codes
http://www.unilim.fr/pages_perso/philippe.gaborit/shortIC.ps

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

Philippe Gaborit and Marc Girault. Lightweight code-based identification and sig-
nature. In 2007 IEEE International Symposium on Information Theory, pages 191—
195. IEEE, 2007. https://www.unilim.fr/pages_perso/philippe.gaborit/isit_
short_rev.pdf. 12

Shuhong Gao and Todd Mateer. Additive fast fourier transforms over finite fields.
IEEE Transactions on Information Theory, 56(12):6265-6272, 2010. 25

Danilo Gligoroski. Pqc forum, official comment on bike submission. NIST
PQC forum, December 2017. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/official-comments/
BIKE-official-comment.pdf. 13

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270-299, 1984. 15

Qian Guo, Thomas Johansson, and Carl Léndahl. A new algorithm for solving ring-lpn
with a reducible polynomial. IEEE Transactions on Information Theory, 61(11):6204—
6212, 2015. https://arxiv.org/abs/1409.0472. 48

Dennis Hofheinz, Kathrin Hovelmanns, and Eike Kiltz. A modular analysis of the
fujisaki-okamoto transformation. In Theory of Cryptography Conference, pages 341—
371. Springer, 2017. 9, 16, 17, 43, 44, 49

W Cary Huffman and Vera Pless. Fundamentals of error-correcting
codes. Cambridge university press, 2010. https://www.amazon.fr/
Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/05621131707. 10

Shu Lin and Daniel J Costello. Error control coding, volume 2. Prentice Hall Englewood
Cliffs, 2004. 22, 23, 24, 25

Zhen Liu and Yanbin Pan. Pqc forum, official comment on hqc submission. NIST
PQC forum, January 2018. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/official-comments/
HQC-official-comment.pdf. 13

Zhen Liu, Yanbin Pan, and Tianyuan Xie. Breaking the hardness assumption and
ind-cpa security of hqc submitted to nist pqc project. In International Conference on
Cryptology and Network Security, pages 344-356. Springer, 2018. 13

Carl Londahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. Squaring attacks on mceliece public-
key cryptosystems using quasi-cyclic codes of even dimension. Designs, Codes
and Cryptography, 80(2):359-377, 2016. https://link.springer.com/article/10.
1007/s10623-015-0099-x. 48

ol

https://www.unilim.fr/pages_perso/philippe.gaborit/isit_short_rev.pdf
https://www.unilim.fr/pages_perso/philippe.gaborit/isit_short_rev.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/BIKE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/BIKE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/BIKE-official-comment.pdf
https://arxiv.org/abs/1409.0472
https://www.amazon.fr/Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707
https://www.amazon.fr/Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://link.springer.com/article/10.1007/s10623-015-0099-x
https://link.springer.com/article/10.1007/s10623-015-0099-x

[25]

[26]

27]

28]

[29]

[30]

[31]

[32]

[33]

Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-
correcting codes, volume 16. Elsevier, 1977. 26

Alexandeg May, Alexander Meurer, and FEnrico Thomae. Decoding random linear
codes in O(2%94). In Asiacrypt, volume 7073, pages 107-124. Springer, 2011. https:
//1link.springer.com/chapter/10.1007/978-3-642-25385-0_6. 48

Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In EUROCRYPT (1), pages 203-228, 2015. http:
//www.cits.rub.de/imperia/md/content/may/paper/codes.pdf. 48

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto. Mdpc-
mceliece: New mceliece variants from moderate density parity-check codes. In In-
formation Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages
2069-2073. IEEE, 2013. https://eprint.iacr.org/2012/409.pdf. 11, 12

Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, 8(5):5-9, 1962. http://ieeexplore.ieee.org/document/
1057777/. 48

Nicolas Sendrier. Decoding one out of many. In International Workshop on Post-
Quantum Cryptography, pages 51-67. Springer, 2011. https://eprint.iacr.org/
2011/367.pdf. 13, 48

Nicolas Sendrier. Secure Sampling of Constant Weight Words — Application to BIKE.
Cryptology ePrint Archive, Report 2021/1631, 2021. https://eprint.iacr.org/
2021/1631. 32, 45, 46

Victor Shoup. NTL: A library for doing number theory. 2001. http://www.shoup.
net/ntl. 33

Jacques Stern. A method for finding codewords of small weight. In International
Colloquium on Coding Theory and Applications, pages 106-113. Springer, 1988. https:
//link.springer.com/chapter/10.1007/BFb0019850. 48

92

https://link.springer.com/chapter/10.1007/978-3-642-25385-0_6
https://link.springer.com/chapter/10.1007/978-3-642-25385-0_6
http://www.cits.rub.de/imperia/md/content/may/paper/codes.pdf
http://www.cits.rub.de/imperia/md/content/may/paper/codes.pdf
https://eprint.iacr.org/2012/409.pdf
http://ieeexplore.ieee.org/document/1057777/
http://ieeexplore.ieee.org/document/1057777/
https://eprint.iacr.org/2011/367.pdf
https://eprint.iacr.org/2011/367.pdf
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631
http://www.shoup.net/ntl
http://www.shoup.net/ntl
https://link.springer.com/chapter/10.1007/BFb0019850
https://link.springer.com/chapter/10.1007/BFb0019850

	History of updates on HQC
	Updates for April the 30th 2023
	Updates for October the 1st 2022
	Updates for June the 6th 2021
	Updates for October the 1st 2020
	Updates for May the 4th 2020
	Modifications between Round 1 and Round 2

	Specifications
	Preliminaries
	General definitions
	Difficult problems for cryptography

	Encryption and security
	Presentation of the scheme
	Public key encryption version (HQC.PKE)
	KEM/DEM version (HQC.KEM)
	A hybrid encryption scheme (HQC.HE)

	Analysis of the error vector distribution for Hamming distance
	Decoding with concatenated Reed-Muller and Reed-Solomon codes
	Definitions
	Reed-Solomon codes
	Encoding shortened Reed-Solomon codes
	Decoding shortened Reed-Solomon codes
	Duplicated Reed-Muller codes
	Encoding Duplicated Reed-Muller codes
	Decoding Duplicated Reed-Muller codes
	Decryption failure rate analysis
	Simulation results

	Representation of objects
	Keys and ciphertext representation
	Randomness and vector generation

	Parameters
	Concatenated codes

	Performance Analysis
	Reference implementation
	Optimized constant-time implementation
	Hardware Implementation

	Known Answer Test Values
	Security
	IND-CPA security
	IND-CCA security
	HQC.PKE correction and DFR
	HHK proof

	Security proof with non uniform randomness generation
	Arguments related to the security reduction
	Arguments related to the public key generation

	Known Attacks
	Advantages and Limitations
	Advantages
	Limitations

	References

